Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ο be given.
Assume H0: ∀ x1 : ι → ι → ι . (∃ x2 x3 : ι → ι → ι . ∃ x4 : ι → ι → ι → ι → ι → ι . ∃ x5 x6 : ι → ι → ι . ∃ x7 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p struct_r BinRelnHom struct_id struct_comp x1 x2 x3 x4 x5 x6 x7)x0.
Apply H0 with BinReln_product.
Let x1 of type ο be given.
Assume H1: ∀ x2 : ι → ι → ι . (∃ x3 : ι → ι → ι . ∃ x4 : ι → ι → ι → ι → ι → ι . ∃ x5 x6 : ι → ι → ι . ∃ x7 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p struct_r BinRelnHom struct_id struct_comp BinReln_product x2 x3 x4 x5 x6 x7)x1.
Apply H1 with λ x2 x3 . lam (setprod (ap x2 0) (ap x3 0)) (λ x4 . ap x4 0).
Let x2 of type ο be given.
Assume H2: ∀ x3 : ι → ι → ι . (∃ x4 : ι → ι → ι → ι → ι → ι . ∃ x5 x6 : ι → ι → ι . ∃ x7 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p struct_r BinRelnHom struct_id struct_comp BinReln_product (λ x8 x9 . lam (setprod (ap x8 0) (ap x9 0)) (λ x10 . ap x10 0)) x3 x4 x5 x6 x7)x2.
Apply H2 with λ x3 x4 . lam (setprod (ap x3 0) (ap x4 0)) (λ x5 . ap x5 1).
Let x3 of type ο be given.
Assume H3: ∀ x4 : ι → ι → ι → ι → ι → ι . (∃ x5 x6 : ι → ι → ι . ∃ x7 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p struct_r BinRelnHom struct_id struct_comp BinReln_product (λ x8 x9 . lam (setprod (ap x8 0) (ap x9 0)) (λ x10 . ap x10 0)) (λ x8 x9 . lam (setprod (ap x8 0) (ap x9 0)) (λ x10 . ap x10 1)) x4 x5 x6 x7)x3.
Apply H3 with λ x4 x5 x6 x7 x8 . lam (ap x6 0) (λ x9 . lam 2 (λ x10 . If_i (x10 = 0) (ap x7 x9) (ap x8 x9))).
Let x4 of type ο be given.
Assume H4: ∀ x5 : ι → ι → ι . (∃ x6 : ι → ι → ι . ∃ x7 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p struct_r BinRelnHom struct_id struct_comp BinReln_product (λ x8 x9 . lam (setprod (ap x8 0) (ap x9 0)) (λ x10 . ap x10 0)) (λ x8 x9 . lam (setprod (ap x8 0) (ap x9 0)) (λ x10 . ap x10 1)) (λ x8 x9 x10 x11 x12 . lam (ap x10 0) (λ x13 . lam 2 (λ x14 . If_i (x14 = 0) (ap x11 x13) (ap x12 x13)))) x5 x6 x7)x4.
Apply H4 with BinReln_exp.
Let x5 of type ο be given.
Assume H5: ∀ x6 : ι → ι → ι . (∃ x7 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p struct_r BinRelnHom struct_id struct_comp BinReln_product (λ x8 x9 . lam (setprod (ap x8 0) (ap x9 0)) (λ x10 . ap x10 0)) (λ x8 x9 . lam (setprod (ap x8 0) (ap x9 0)) (λ x10 . ap x10 1)) (λ x8 x9 x10 x11 x12 . lam ... ...) ... ... ...)x5.
...