Let x0 of type ι be given.
Let x1 of type ι be given.
Apply Subq_binintersection_eq with
x0,
x1,
λ x2 x3 : ο . x3 ⟶ x1 = binunion x0 (setminus x1 x0).
Apply unknownprop_d80a5cdd35aff682e6edc37d56782355ff9ceaa0a69a0eeabe526b6102deafb2 with
x1,
x0,
λ x2 x3 . x3 = binunion x0 (setminus x1 x0).
Apply binunion_com with
setminus x1 x0,
binintersect x1 x0,
λ x2 x3 . x3 = binunion x0 (setminus x1 x0).
Claim L1: ∀ x4 : ι → ο . x4 y3 ⟶ x4 y2
Let x4 of type ι → ο be given.
set y5 to be λ x5 . x4
Apply binintersect_com with
y3,
y2,
λ x6 x7 . x7 = y2,
λ x6 x7 . y5 (binunion x6 (setminus y3 y2)) (binunion x7 (setminus y3 y2)) leaving 2 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H1.
Let x4 of type ι → ι → ο be given.
Apply L1 with
λ x5 . x4 x5 y3 ⟶ x4 y3 x5.
Assume H2: x4 y3 y3.
The subproof is completed by applying H2.