Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Apply Subq_binintersection_eq with x0, x1, λ x2 x3 : ο . x3x1 = binunion x0 (setminus x1 x0).
Assume H0: binintersect x0 x1 = x0.
Apply unknownprop_d80a5cdd35aff682e6edc37d56782355ff9ceaa0a69a0eeabe526b6102deafb2 with x1, x0, λ x2 x3 . x3 = binunion x0 (setminus x1 x0).
Apply binunion_com with setminus x1 x0, binintersect x1 x0, λ x2 x3 . x3 = binunion x0 (setminus x1 x0).
set y2 to be binunion (binintersect x1 x0) (setminus x1 x0)
set y3 to be binunion x1 (setminus y2 x1)
Claim L1: ∀ x4 : ι → ο . x4 y3x4 y2
Let x4 of type ιο be given.
Assume H1: x4 (binunion y2 (setminus y3 y2)).
set y5 to be λ x5 . x4
Apply binintersect_com with y3, y2, λ x6 x7 . x7 = y2, λ x6 x7 . y5 (binunion x6 (setminus y3 y2)) (binunion x7 (setminus y3 y2)) leaving 2 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H1.
Let x4 of type ιιο be given.
Apply L1 with λ x5 . x4 x5 y3x4 y3 x5.
Assume H2: x4 y3 y3.
The subproof is completed by applying H2.