pf |
---|
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι → ι → ι be given.
Let x3 of type ι → ι → ι be given.
Let x4 of type ι → ι → ο be given.
Let x5 of type ι → ι → ο be given.
Let x6 of type ι → ο be given.
Let x7 of type ι → ο be given.
Let x8 of type ι → ο be given.
Let x9 of type ι → ο be given.
Apply and5I with x0 = x1, ∀ x10 . prim1 x10 x0 ⟶ ∀ x11 . prim1 x11 x0 ⟶ x2 x10 x11 = x3 x10 x11, ∀ x10 . prim1 x10 x0 ⟶ ∀ x11 . prim1 x11 x0 ⟶ x4 x10 x11 = x5 x10 x11, ∀ x10 . prim1 x10 x0 ⟶ x6 x10 = x7 x10, ∀ x10 . prim1 x10 x0 ⟶ x8 x10 = x9 x10 leaving 5 subgoals.
The subproof is completed by applying L2.
Let x10 of type ι be given.
Let x11 of type ι be given.
Apply unknownprop_919da5b3f8abea86aef650de43d59054db9dd1f00b187303454d00870c50838e with x0, x2, x4, x6, x8, x10, x11, λ x12 x13 . x13 = x3 x10 x11 leaving 3 subgoals.
The subproof is completed by applying H3.
The subproof is completed by applying H4.
Apply L2 with λ x12 x13 . prim1 x10 x12.
The subproof is completed by applying H3.
Apply L2 with λ x12 x13 . prim1 x11 x12.
The subproof is completed by applying H4.
Apply H0 with λ x12 x13 . e3162.. (f482f.. x13 (4ae4a.. 4a7ef..)) x10 x11 = x3 x10 x11.
Let x12 of type ι → ι → ο be given.
Apply unknownprop_919da5b3f8abea86aef650de43d59054db9dd1f00b187303454d00870c50838e with x1, x3, x5, x7, x9, x10, x11, λ x13 x14 . x12 x14 x13 leaving 2 subgoals.
The subproof is completed by applying L5.
The subproof is completed by applying L6.
Let x10 of type ι be given.
Let x11 of type ι be given.
Apply unknownprop_41657245c959bff13335f75c2bfddc943a6e6cc81b466ce4da5c55ef02d97236 with x0, x2, x4, x6, x8, x10, x11, λ x12 x13 : ο . x13 = x5 x10 x11 leaving 3 subgoals.
The subproof is completed by applying H3.
The subproof is completed by applying H4.
Apply L2 with λ x12 x13 . prim1 x10 x12.
The subproof is completed by applying H3.
Apply L2 with λ x12 x13 . prim1 x11 x12.
The subproof is completed by applying H4.
Apply H0 with λ x12 x13 . 2b2e3.. (f482f.. x13 (4ae4a.. (4ae4a.. 4a7ef..))) x10 x11 = x5 x10 x11.
Let x12 of type ο → ο → ο be given.
Apply unknownprop_41657245c959bff13335f75c2bfddc943a6e6cc81b466ce4da5c55ef02d97236 with x1, x3, x5, x7, x9, x10, x11, λ x13 x14 : ο . x12 x14 x13 leaving 2 subgoals.
The subproof is completed by applying L5.
The subproof is completed by applying L6.
Let x10 of type ι be given.
Apply unknownprop_65d72cc78004d9f82bcb9fda0adc59ea6ce1204764fb327cf33a2ccdfe50522c with x0, x2, x4, x6, x8, x10, λ x11 x12 : ο . x12 = x7 x10 leaving 2 subgoals.
The subproof is completed by applying H3.
Apply L2 with λ x11 x12 . prim1 x10 x11.
The subproof is completed by applying H3.
Apply H0 with λ x11 x12 . decode_p (f482f.. x12 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x10 = x7 x10.
Let x11 of type ο → ο → ο be given.
Apply unknownprop_65d72cc78004d9f82bcb9fda0adc59ea6ce1204764fb327cf33a2ccdfe50522c with x1, x3, x5, x7, x9, x10, λ x12 x13 : ο . x11 x13 x12.
The subproof is completed by applying L4.
Let x10 of type ι be given.
Apply unknownprop_e00acf2ca812d320aa79b218a8aeca38a10cb2680599fb79bda0b865a64d543e with x0, x2, x4, x6, x8, x10, λ x11 x12 : ο . x12 = x9 x10 leaving 2 subgoals.
The subproof is completed by applying H3.
Apply H0 with λ x11 x12 . decode_p (f482f.. x12 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) x10 = x9 x10.
Let x11 of type ο → ο → ο be given.
Apply unknownprop_e00acf2ca812d320aa79b218a8aeca38a10cb2680599fb79bda0b865a64d543e with x1, x3, ..., ..., ..., ..., ....
■
|
|