Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι(ιο) → ο be given.
Let x1 of type ι(ιο) → ο be given.
Assume H0: ed32f.. x0 x1.
Let x2 of type ι be given.
Assume H1: ordinal x2.
Assume H2: PNo_lenbdd x2 x0.
Assume H3: PNo_lenbdd x2 x1.
Claim L4: ...
...
Apply L4 with ∃ x3 . and (∃ x4 : ι → ο . ced99.. x0 x1 x3 x4) (∀ x4 x5 : ι → ο . ced99.. x0 x1 x3 x4ced99.. x0 x1 x3 x5x4 = x5).
Let x3 of type ι be given.
Assume H5: (λ x4 . and (and (ordinal x4) (∃ x5 : ι → ο . 47618.. x0 x1 x4 x5)) (∀ x5 . prim1 x5 x4not (∃ x6 : ι → ο . 47618.. x0 x1 x5 x6))) x3.
Apply H5 with ∃ x4 . and (∃ x5 : ι → ο . ced99.. x0 x1 x4 x5) (∀ x5 x6 : ι → ο . ced99.. x0 x1 x4 x5ced99.. x0 x1 x4 x6x5 = x6).
Assume H6: and (ordinal x3) (∃ x4 : ι → ο . 47618.. x0 x1 x3 x4).
Apply H6 with (∀ x4 . prim1 x4 x3not (∃ x5 : ι → ο . 47618.. x0 x1 x4 x5))∃ x4 . and (∃ x5 : ι → ο . ced99.. x0 x1 x4 x5) (∀ x5 x6 : ι → ο . ced99.. x0 x1 x4 x5ced99.. x0 x1 x4 x6x5 = x6).
Assume H7: ordinal x3.
Assume H8: ∃ x4 : ι → ο . 47618.. x0 x1 x3 x4.
Assume H9: ∀ x4 . prim1 x4 x3not (∃ x5 : ι → ο . 47618.. x0 x1 x4 x5).
Apply H8 with ∃ x4 . and (∃ x5 : ι → ο . ced99.. x0 x1 x4 x5) (∀ x5 x6 : ι → ο . ced99.. x0 x1 x4 x5ced99.. x0 x1 x4 x6x5 = x6).
Let x4 of type ιο be given.
Assume H10: 47618.. x0 x1 x3 x4.
Let x5 of type ο be given.
Assume H11: ∀ x6 . and (∃ x7 : ι → ο . ced99.. x0 x1 x6 x7) (∀ x7 x8 : ι → ο . ced99.. x0 x1 x6 x7ced99.. x0 x1 x6 x8x7 = x8)x5.
Apply H11 with x3.
Apply andI with ∃ x6 : ι → ο . ced99.. x0 x1 x3 x6, ∀ x6 x7 : ι → ο . ced99.. x0 x1 x3 x6ced99.. x0 x1 x3 x7x6 = x7 leaving 2 subgoals.
Let x6 of type ο be given.
Assume H12: ∀ x7 : ι → ο . ced99.. x0 x1 x3 x7x6.
Apply H12 with λ x7 . and (prim1 x7 x3) (x4 x7).
Apply andI with 1a487.. x0 x1 x3 (λ x7 . and (prim1 x7 x3) (x4 x7)), ∀ x7 . nIn x7 ...not (and (prim1 x7 x3) (x4 x7)) leaving 2 subgoals.
...
...
...