Let x0 of type ι → (ι → ο) → ο be given.
Let x1 of type ι → (ι → ο) → ο be given.
Let x2 of type ι be given.
Apply L4 with
∃ x3 . and (∃ x4 : ι → ο . ced99.. x0 x1 x3 x4) (∀ x4 x5 : ι → ο . ced99.. x0 x1 x3 x4 ⟶ ced99.. x0 x1 x3 x5 ⟶ x4 = x5).
Let x3 of type ι be given.
Apply H5 with
∃ x4 . and (∃ x5 : ι → ο . ced99.. x0 x1 x4 x5) (∀ x5 x6 : ι → ο . ced99.. x0 x1 x4 x5 ⟶ ced99.. x0 x1 x4 x6 ⟶ x5 = x6).
Apply H6 with
(∀ x4 . prim1 x4 x3 ⟶ not (∃ x5 : ι → ο . 47618.. x0 x1 x4 x5)) ⟶ ∃ x4 . and (∃ x5 : ι → ο . ced99.. x0 x1 x4 x5) (∀ x5 x6 : ι → ο . ced99.. x0 x1 x4 x5 ⟶ ced99.. x0 x1 x4 x6 ⟶ x5 = x6).
Assume H8:
∃ x4 : ι → ο . 47618.. x0 x1 x3 x4.
Assume H9:
∀ x4 . prim1 x4 x3 ⟶ not (∃ x5 : ι → ο . 47618.. x0 x1 x4 x5).
Apply H8 with
∃ x4 . and (∃ x5 : ι → ο . ced99.. x0 x1 x4 x5) (∀ x5 x6 : ι → ο . ced99.. x0 x1 x4 x5 ⟶ ced99.. x0 x1 x4 x6 ⟶ x5 = x6).
Let x4 of type ι → ο be given.
Let x5 of type ο be given.
Assume H11:
∀ x6 . and (∃ x7 : ι → ο . ced99.. x0 x1 x6 x7) (∀ x7 x8 : ι → ο . ced99.. x0 x1 x6 x7 ⟶ ced99.. x0 x1 x6 x8 ⟶ x7 = x8) ⟶ x5.
Apply H11 with
x3.
Apply andI with
∃ x6 : ι → ο . ced99.. x0 x1 x3 x6,
∀ x6 x7 : ι → ο . ced99.. x0 x1 x3 x6 ⟶ ced99.. x0 x1 x3 x7 ⟶ x6 = x7 leaving 2 subgoals.
Let x6 of type ο be given.
Assume H12:
∀ x7 : ι → ο . ced99.. x0 x1 x3 x7 ⟶ x6.
Apply H12 with
λ x7 . and (prim1 x7 x3) (x4 x7).
Apply andI with
1a487.. x0 x1 x3 (λ x7 . and (prim1 x7 x3) (x4 x7)),
∀ x7 . nIn x7 ... ⟶ not (and (prim1 x7 x3) (x4 x7)) leaving 2 subgoals.