Search for blocks/addresses/...

Proofgold Proof

pf
Claim L0: ...
...
Let x0 of type ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x1 of type ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x2 of type ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Assume H1: ChurchNum_8ary_proj_p x1.
Assume H2: ChurchNum_3ary_proj_p x0.
Assume H3: ChurchNum_8ary_proj_p x2.
Apply L0 with ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 x1 (λ x3 x4 x5 : (ι → ι)ι → ι . x3)) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 x1) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt7_id_ge7_rot2 x2 x0) (ChurchNums_8_perm_1_2_3_4_5_6_7_0 x2)and (x0 = ChurchNums_8x3_to_3_lt5_id_ge5_rot2 x1 (λ x3 x4 x5 : (ι → ι)ι → ι . x3)) (x2 = ChurchNums_8_perm_3_4_5_6_7_0_1_2 x1).
Let x3 of type (((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ο be given.
Assume H4: ∀ x4 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x5 x6 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . x3 x4 x5 x6ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 x5 (λ x7 x8 x9 : (ι → ι)ι → ι . x7)) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 x5) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt7_id_ge7_rot2 x6 x4) (ChurchNums_8_perm_1_2_3_4_5_6_7_0 x6)and (x4 = ChurchNums_8x3_to_3_lt5_id_ge5_rot2 x5 (λ x7 x8 x9 : (ι → ι)ι → ι . x7)) (x6 = ChurchNums_8_perm_3_4_5_6_7_0_1_2 x5).
Assume H5: ∀ x4 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x5 x6 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . (ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 x5 (λ x7 x8 x9 : (ι → ι)ι → ι . x7)) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 x5) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt7_id_ge7_rot2 x6 x4) (ChurchNums_8_perm_1_2_3_4_5_6_7_0 x6)∀ x7 : ο . x7)x3 x4 x5 x6.
Assume H6: ∀ x4 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x5 x6 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . x4 = ChurchNums_8x3_to_3_lt5_id_ge5_rot2 x5 (λ x7 x8 x9 : (ι → ι)ι → ι . x7)x6 = ChurchNums_8_perm_3_4_5_6_7_0_1_2 x5x3 x4 x5 x6.
Apply H4 with x0, x1, x2.
Apply H1 with λ x4 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . x3 x0 x4 x2 leaving 8 subgoals.
Apply H2 with λ x4 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . x3 x4 (λ x5 x6 x7 x8 x9 x10 x11 x12 : (ι → ι)ι → ι . x5) x2 leaving 3 subgoals.
Apply H3 with λ x4 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . x3 (λ x5 x6 x7 : (ι → ι)ι → ι . x5) (λ x5 x6 x7 x8 x9 x10 x11 x12 : (ι → ι)ι → ι . x5) x4 leaving 8 subgoals.
Apply H5 with λ x4 x5 x6 : (ι → ι)ι → ι . x4, λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x4, λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x4.
The subproof is completed by applying neq_4_1.
Apply H5 with λ x4 x5 x6 : (ι → ι)ι → ι . x4, λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x4, λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x5.
Assume H7: ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x4) (λ x4 x5 x6 : (ι → ι)ι → ι . x4)) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x4)) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt7_id_ge7_rot2 (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x5) (λ x4 x5 x6 : (ι → ι)ι → ι . x4)) (ChurchNums_8_perm_1_2_3_4_5_6_7_0 (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x5)).
Apply neq_4_2.
The subproof is completed by applying H7.
Apply H5 with λ x4 x5 x6 : (ι → ι)ι → ι . x4, λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x4, λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x6.
Assume H7: ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x4) (λ x4 x5 x6 : (ι → ι)ι → ι . x4)) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x4)) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt7_id_ge7_rot2 (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x6) (λ x4 x5 x6 : (ι → ι)ι → ι . x4)) (ChurchNums_8_perm_1_2_3_4_5_6_7_0 (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x6)).
Apply neq_4_3.
The subproof is completed by applying H7.
Apply H6 with λ x4 x5 x6 : (ι → ι)ι → ι . x4, λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x4, λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x7 leaving 2 subgoals.
Let x4 of type (((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → (((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ο be given.
Assume H7: x4 (λ x5 x6 x7 : (ι → ι)ι → ι . x5) (ChurchNums_8x3_to_3_lt5_id_ge5_rot2 (λ x5 x6 x7 x8 x9 x10 x11 x12 : (ι → ι)ι → ι . x5) (λ x5 x6 x7 : (ι → ι)ι → ι . x5)).
The subproof is completed by applying H7.
Let x4 of type (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ο be given.
Assume H7: x4 (λ x5 x6 x7 x8 x9 x10 x11 x12 : (ι → ι)ι → ι . x8) (ChurchNums_8_perm_3_4_5_6_7_0_1_2 (λ x5 x6 x7 x8 x9 x10 x11 x12 : (ι → ι)ι → ι . x5)).
The subproof is completed by applying H7.
Apply H5 with λ x4 x5 x6 : (ι → ι)ι → ι . x4, λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x4, λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x8.
Assume H7: ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x4) (λ x4 x5 x6 : (ι → ι)ι → ι . x4)) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x4)) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt7_id_ge7_rot2 (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x8) (λ x4 x5 x6 : (ι → ι)ι → ι . x4)) (ChurchNums_8_perm_1_2_3_4_5_6_7_0 (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x8)).
Apply neq_5_4.
Let x4 of type ιιο be given.
The subproof is completed by applying H7 with λ x5 x6 . x4 x6 x5.
Apply H5 with λ x4 x5 x6 : (ι → ι)ι → ι . x4, λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x4, λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x9.
Assume H7: ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x4) (λ x4 x5 x6 : (ι → ι)ι → ι . x4)) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x4)) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt7_id_ge7_rot2 (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x9) ...) ....
...
...
...
...
...
...
...
...
...
...
...
...