Let x0 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x1 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x2 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Apply L0 with
ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 x1 (λ x3 x4 x5 : (ι → ι) → ι → ι . x3)) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 x1) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt7_id_ge7_rot2 x2 x0) (ChurchNums_8_perm_1_2_3_4_5_6_7_0 x2) ⟶ and (x0 = ChurchNums_8x3_to_3_lt5_id_ge5_rot2 x1 (λ x3 x4 x5 : (ι → ι) → ι → ι . x3)) (x2 = ChurchNums_8_perm_3_4_5_6_7_0_1_2 x1).
Let x3 of type (((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι)) → (((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι)) → (((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι)) → ο be given.
Assume H6:
∀ x4 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . ∀ x5 x6 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . x4 = ChurchNums_8x3_to_3_lt5_id_ge5_rot2 x5 (λ x7 x8 x9 : (ι → ι) → ι → ι . x7) ⟶ x6 = ChurchNums_8_perm_3_4_5_6_7_0_1_2 x5 ⟶ x3 x4 x5 x6.
Apply H4 with
x0,
x1,
x2.
Apply H1 with
λ x4 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . x3 x0 x4 x2 leaving 8 subgoals.
Apply H2 with
λ x4 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . x3 x4 (λ x5 x6 x7 x8 x9 x10 x11 x12 : (ι → ι) → ι → ι . x5) x2 leaving 3 subgoals.
Apply H3 with
λ x4 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . x3 (λ x5 x6 x7 : (ι → ι) → ι → ι . x5) (λ x5 x6 x7 x8 x9 x10 x11 x12 : (ι → ι) → ι → ι . x5) x4 leaving 8 subgoals.
Apply H5 with
λ x4 x5 x6 : (ι → ι) → ι → ι . x4,
λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x4,
λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x4.
The subproof is completed by applying neq_4_1.
Apply H5 with
λ x4 x5 x6 : (ι → ι) → ι → ι . x4,
λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x4,
λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x5.
Apply neq_4_2.
The subproof is completed by applying H7.
Apply H5 with
λ x4 x5 x6 : (ι → ι) → ι → ι . x4,
λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x4,
λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x6.
Apply neq_4_3.
The subproof is completed by applying H7.
Apply H6 with
λ x4 x5 x6 : (ι → ι) → ι → ι . x4,
λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x4,
λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x7 leaving 2 subgoals.
Let x4 of type (((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι)) → (((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι)) → ο be given.
Assume H7:
x4 (λ x5 x6 x7 : (ι → ι) → ι → ι . x5) (ChurchNums_8x3_to_3_lt5_id_ge5_rot2 (λ x5 x6 x7 x8 x9 x10 x11 x12 : (ι → ι) → ι → ι . x5) (λ x5 x6 x7 : (ι → ι) → ι → ι . x5)).
The subproof is completed by applying H7.
Let x4 of type (((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι)) → (((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι)) → ο be given.
The subproof is completed by applying H7.
Apply H5 with
λ x4 x5 x6 : (ι → ι) → ι → ι . x4,
λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x4,
λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x8.
Apply neq_5_4.
Let x4 of type ι → ι → ο be given.
The subproof is completed by applying H7 with λ x5 x6 . x4 x6 x5.
Apply H5 with
λ x4 x5 x6 : (ι → ι) → ι → ι . x4,
λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x4,
λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x9.