Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ιιι be given.
Let x3 of type ιιι be given.
Let x4 of type ιιι be given.
Let x5 of type ιιι be given.
Let x6 of type ιιο be given.
Let x7 of type ιιο be given.
Let x8 of type ι be given.
Let x9 of type ι be given.
Assume H0: a599b.. x0 x2 x4 x6 x8 = a599b.. x1 x3 x5 x7 x9.
Claim L1: ...
...
Claim L2: ...
...
Apply and5I with x0 = x1, ∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x2 x10 x11 = x3 x10 x11, ∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x4 x10 x11 = x5 x10 x11, ∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x6 x10 x11 = x7 x10 x11, x8 = x9 leaving 5 subgoals.
The subproof is completed by applying L2.
Let x10 of type ι be given.
Assume H3: prim1 x10 x0.
Let x11 of type ι be given.
Assume H4: prim1 x11 x0.
Apply unknownprop_b5795914eb193bbfa4f632de98b54a6a76bdf54be34a0176ad47fbe277bed7e0 with x0, x2, x4, x6, x8, x10, x11, λ x12 x13 . x13 = x3 x10 x11 leaving 3 subgoals.
The subproof is completed by applying H3.
The subproof is completed by applying H4.
Claim L5: prim1 x10 x1
Apply L2 with λ x12 x13 . prim1 x10 x12.
The subproof is completed by applying H3.
Claim L6: prim1 x11 x1
Apply L2 with λ x12 x13 . prim1 x11 x12.
The subproof is completed by applying H4.
Apply H0 with λ x12 x13 . e3162.. (f482f.. x13 (4ae4a.. 4a7ef..)) x10 x11 = x3 x10 x11.
Let x12 of type ιιο be given.
Apply unknownprop_b5795914eb193bbfa4f632de98b54a6a76bdf54be34a0176ad47fbe277bed7e0 with x1, x3, x5, x7, x9, x10, x11, λ x13 x14 . x12 x14 x13 leaving 2 subgoals.
The subproof is completed by applying L5.
The subproof is completed by applying L6.
Let x10 of type ι be given.
Assume H3: prim1 x10 x0.
Let x11 of type ι be given.
Assume H4: prim1 x11 x0.
Apply unknownprop_02057732628d0db44b1bb613fdfbb3b7e15d7c624fa9ca0b22b5faab75926897 with x0, x2, x4, x6, x8, x10, x11, λ x12 x13 . x13 = x5 x10 x11 leaving 3 subgoals.
The subproof is completed by applying H3.
The subproof is completed by applying H4.
Claim L5: prim1 x10 x1
Apply L2 with λ x12 x13 . prim1 x10 x12.
The subproof is completed by applying H3.
Claim L6: prim1 x11 x1
Apply L2 with λ x12 x13 . prim1 x11 x12.
The subproof is completed by applying H4.
Apply H0 with λ x12 x13 . e3162.. (f482f.. x13 (4ae4a.. (4ae4a.. 4a7ef..))) x10 x11 = x5 x10 x11.
Let x12 of type ιιο be given.
Apply unknownprop_02057732628d0db44b1bb613fdfbb3b7e15d7c624fa9ca0b22b5faab75926897 with x1, x3, x5, x7, x9, x10, x11, λ x13 x14 . x12 x14 x13 leaving 2 subgoals.
The subproof is completed by applying L5.
The subproof is completed by applying L6.
Let x10 of type ι be given.
Assume H3: prim1 x10 x0.
Let x11 of type ι be given.
Assume H4: prim1 x11 x0.
Apply unknownprop_717c381bdb867b0ee25ff7f9445699e0386c192122d455239cc3e38f81c565e2 with x0, x2, x4, x6, x8, x10, x11, λ x12 x13 : ο . x13 = x7 x10 x11 leaving 3 subgoals.
The subproof is completed by applying H3.
The subproof is completed by applying H4.
Claim L5: prim1 x10 x1
Apply L2 with λ x12 x13 . prim1 x10 x12.
The subproof is completed by applying H3.
Claim L6: prim1 x11 x1
Apply L2 with λ x12 x13 . prim1 x11 x12.
The subproof is completed by applying H4.
Apply H0 with λ x12 x13 . 2b2e3.. (f482f.. x13 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x10 x11 = x7 x10 x11.
Let x12 of type οοο be given.
Apply unknownprop_717c381bdb867b0ee25ff7f9445699e0386c192122d455239cc3e38f81c565e2 with x1, x3, x5, x7, x9, x10, x11, λ x13 x14 : ο . x12 x14 x13 leaving 2 subgoals.
The subproof is completed by applying L5.
The subproof is completed by applying L6.
Apply unknownprop_f61d3deee040b5ae75f3822d9e31727f50b0b0f309182f0b5d03c7a5e18acd59 with x0, x2, x4, x6, x8, λ x10 x11 . x11 = x9.
Apply H0 with λ x10 x11 . f482f.. ... ... = ....
...