Let x0 of type ι be given.
Let x1 of type ι → ι → ο be given.
Assume H0: ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2.
Let x2 of type ι be given.
Assume H1: x2 ∈ x0.
Let x3 of type ι be given.
Assume H2: x3 ∈ x0.
Let x4 of type ι be given.
Assume H3: x4 ∈ x0.
Let x5 of type ι be given.
Assume H4: x5 ∈ x0.
Let x6 of type ι be given.
Assume H5: x6 ∈ x0.
Let x7 of type ι be given.
Assume H6: x7 ∈ x0.
Let x8 of type ι be given.
Assume H7: x8 ∈ x0.
Let x9 of type ι be given.
Assume H8: x9 ∈ x0.
Assume H9:
5b060.. x1 x2 x3 x4 x5 x6 x7 x8 x9.
Apply unknownprop_040811ae0186526223767c616c3dd7ffa3f3236cf7d1a285ed0bd3dce15c6235 with
x0,
x1,
x2,
x3,
x4,
x5,
x7,
x6,
x8,
x9 leaving 10 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H1.
The subproof is completed by applying H2.
The subproof is completed by applying H3.
The subproof is completed by applying H4.
The subproof is completed by applying H6.
The subproof is completed by applying H5.
The subproof is completed by applying H7.
The subproof is completed by applying H8.
Apply unknownprop_6554be2d35315b7d107c606122567b1a5089229eb364b7f2691250f7b61b4533 with
x0,
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8,
x9 leaving 10 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H1.
The subproof is completed by applying H2.
The subproof is completed by applying H3.
The subproof is completed by applying H4.
The subproof is completed by applying H5.
The subproof is completed by applying H6.
The subproof is completed by applying H7.
The subproof is completed by applying H8.
The subproof is completed by applying H9.