Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type (((((ιι) → ιι) → ιι) → ι) → ι) → (ιι) → ιι be given.
Let x1 of type (((((ιι) → ιι) → ι) → ιι) → ιι(ιι) → ι) → ι(ι(ιι) → ι) → ι be given.
Let x2 of type (ιιι) → (((ιιι) → (ιι) → ιι) → ι) → (ιι) → ι(ιι) → ι be given.
Let x3 of type (ιι) → ((ιι) → ιιιι) → ι be given.
Assume H0: ∀ x4 x5 x6 x7 . x3 (λ x8 . x7) (λ x8 : ι → ι . λ x9 x10 x11 . x3 (λ x12 . x3 (λ x13 . setsum x12 (setsum 0 0)) (λ x13 : ι → ι . λ x14 x15 x16 . x13 x14)) (λ x12 : ι → ι . λ x13 x14 x15 . x15)) = x3 (λ x8 . x6) (λ x8 : ι → ι . λ x9 x10 x11 . x11).
Assume H1: ∀ x4 . ∀ x5 : ι → (ι → ι)ι → ι . ∀ x6 : ι → ι → ι → ι → ι . ∀ x7 . x3 (λ x8 . x2 (λ x9 x10 . x2 (λ x11 x12 . setsum 0 0) (λ x11 : (ι → ι → ι)(ι → ι)ι → ι . Inj0 0) (λ x11 . setsum (setsum 0 0) x11) (setsum (Inj1 0) x10) (λ x11 . Inj1 x9)) (λ x9 : (ι → ι → ι)(ι → ι)ι → ι . 0) (λ x9 . 0) (x6 (Inj1 0) 0 (x5 0 (λ x9 . setsum 0 0) (x3 (λ x9 . 0) (λ x9 : ι → ι . λ x10 x11 x12 . 0))) (setsum 0 0)) (λ x9 . x1 (λ x10 : (((ι → ι)ι → ι) → ι)ι → ι . λ x11 x12 . λ x13 : ι → ι . x11) (x1 (λ x10 : (((ι → ι)ι → ι) → ι)ι → ι . λ x11 x12 . λ x13 : ι → ι . 0) (x6 0 0 0 0) (λ x10 . λ x11 : ι → ι . Inj1 0)) (λ x10 . λ x11 : ι → ι . x9))) (λ x8 : ι → ι . λ x9 x10 x11 . x1 (λ x12 : (((ι → ι)ι → ι) → ι)ι → ι . λ x13 x14 . λ x15 : ι → ι . 0) x10 (λ x12 . λ x13 : ι → ι . x13 0)) = Inj1 (setsum (x6 (Inj0 (Inj1 0)) 0 0 x7) x7).
Assume H2: ∀ x4 x5 x6 . ∀ x7 : ι → ((ι → ι)ι → ι)(ι → ι) → ι . x2 (λ x8 x9 . x0 (λ x10 : (((ι → ι)ι → ι)ι → ι) → ι . x2 (λ x11 x12 . x1 (λ x13 : (((ι → ι)ι → ι) → ι)ι → ι . λ x14 x15 . λ x16 : ι → ι . Inj1 0) 0 (λ x13 . λ x14 : ι → ι . 0)) (λ x11 : (ι → ι → ι)(ι → ι)ι → ι . x10 (λ x12 : (ι → ι)ι → ι . λ x13 . setsum 0 0)) (λ x11 . x1 (λ x12 : (((ι → ι)ι → ι) → ι)ι → ι . λ x13 x14 . λ x15 : ι → ι . 0) (setsum 0 0) (λ x12 . λ x13 : ι → ι . x11)) 0 (λ x11 . Inj0 0)) (λ x10 . x7 (x7 0 (λ x11 : ι → ι . λ x12 . x0 (λ x13 : (((ι → ι)ι → ι)ι → ι) → ι . 0) (λ x13 . 0) 0) (λ x11 . x1 (λ x12 : (((ι → ι)ι → ι) → ι)ι → ι . λ x13 x14 . λ x15 : ι → ι . 0) 0 (λ x12 . λ x13 : ι → ι . 0))) (λ x11 : ι → ι . λ x12 . setsum x9 x12) (λ x11 . 0)) 0) (λ x8 : (ι → ι → ι)(ι → ι)ι → ι . x0 (λ x9 : (((ι → ι)ι → ι)ι → ι) → ι . x6) (λ x9 . 0) (setsum (x1 (λ x9 : (((ι → ι)ι → ι) → ι)ι → ι . λ x10 x11 . λ x12 : ι → ι . 0) 0 (λ x9 . λ x10 : ι → ι . x3 (λ x11 . 0) (λ x11 : ι → ι . λ x12 x13 x14 . 0))) (x3 (λ x9 . x6) (λ x9 : ι → ι . λ x10 x11 x12 . Inj0 0)))) (λ x8 . setsum (setsum (x0 (λ x9 : (((ι → ι)ι → ι)ι → ι) → ι . x9 (λ x10 : (ι → ι)ι → ι . λ x11 . 0)) (λ x9 . x1 (λ x10 : (((ι → ι)ι → ι) → ι)ι → ι . λ x11 x12 . λ x13 : ι → ι . 0) 0 (λ x10 . λ x11 : ι → ι . 0)) (setsum 0 0)) (Inj1 0)) ...) 0 ... = ....
...