Search for blocks/addresses/...

Proofgold Proof

pf
Apply SNoLev_ind2 with λ x0 x1 . mul_SNo x0 x1 = mul_SNo x1 x0.
Let x0 of type ι be given.
Let x1 of type ι be given.
Assume H0: SNo x0.
Assume H1: SNo x1.
Assume H2: ∀ x2 . x2SNoS_ (SNoLev x0)mul_SNo x2 x1 = mul_SNo x1 x2.
Assume H3: ∀ x2 . x2SNoS_ (SNoLev x1)mul_SNo x0 x2 = mul_SNo x2 x0.
Assume H4: ∀ x2 . x2SNoS_ (SNoLev x0)∀ x3 . x3SNoS_ (SNoLev x1)mul_SNo x2 x3 = mul_SNo x3 x2.
Apply mul_SNo_eq_3 with x0, x1, mul_SNo x0 x1 = mul_SNo x1 x0 leaving 3 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H1.
Let x2 of type ι be given.
Let x3 of type ι be given.
Assume H5: SNoCutP x2 x3.
Assume H6: ∀ x4 . x4x2∀ x5 : ο . (∀ x6 . x6SNoL x0∀ x7 . x7SNoL x1x4 = add_SNo (mul_SNo x6 x1) (add_SNo (mul_SNo x0 x7) (minus_SNo (mul_SNo x6 x7)))x5)(∀ x6 . x6SNoR x0∀ x7 . x7SNoR x1x4 = add_SNo (mul_SNo x6 x1) (add_SNo (mul_SNo x0 x7) (minus_SNo (mul_SNo x6 x7)))x5)x5.
Assume H7: ∀ x4 . x4SNoL x0∀ x5 . x5SNoL x1add_SNo (mul_SNo x4 x1) (add_SNo (mul_SNo x0 x5) (minus_SNo (mul_SNo x4 x5)))x2.
Assume H8: ∀ x4 . x4SNoR x0∀ x5 . x5SNoR x1add_SNo (mul_SNo x4 x1) (add_SNo (mul_SNo x0 x5) (minus_SNo (mul_SNo x4 x5)))x2.
Assume H9: ∀ x4 . x4x3∀ x5 : ο . (∀ x6 . x6SNoL x0∀ x7 . x7SNoR x1x4 = add_SNo (mul_SNo x6 x1) (add_SNo (mul_SNo x0 x7) (minus_SNo (mul_SNo x6 x7)))x5)(∀ x6 . x6SNoR x0∀ x7 . x7SNoL x1x4 = add_SNo (mul_SNo x6 x1) (add_SNo (mul_SNo x0 x7) (minus_SNo (mul_SNo x6 x7)))x5)x5.
Assume H10: ∀ x4 . x4SNoL x0∀ x5 . x5SNoR x1add_SNo (mul_SNo x4 x1) (add_SNo (mul_SNo x0 x5) (minus_SNo (mul_SNo x4 x5)))x3.
Assume H11: ∀ x4 . ...∀ x5 . ...add_SNo (mul_SNo x4 x1) .......
...