Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Assume H0: x0u22.
Assume H1: atleastp u7 x0.
Assume H2: ∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)not (0aea9.. x1 x2).
Claim L3: ...
...
Apply unknownprop_500d1e737e2209e4c583d05afc878803ba55ca9b82cd3357b41edde686af0c3b with u6, x0, False leaving 4 subgoals.
The subproof is completed by applying nat_6.
The subproof is completed by applying H1.
The subproof is completed by applying L3.
Let x1 of type ι be given.
Let x2 of type ι be given.
Assume H4: equip u6 x1.
Assume H5: x2x0.
Assume H6: x1x0.
Assume H7: x1x2.
Apply unknownprop_9c3c4976195baf6bd37497317b74ca268d712dfbd75862a7bcb0572a39ded839 with u5, x1, False leaving 4 subgoals.
The subproof is completed by applying nat_5.
The subproof is completed by applying H4.
Let x3 of type ι be given.
Assume H8: x3x1.
Apply L3 with x3.
Apply H6 with x3.
The subproof is completed by applying H8.
Let x3 of type ι be given.
Let x4 of type ι be given.
Assume H8: equip u5 x3.
Assume H9: x4x1.
Assume H10: x3x1.
Assume H11: x3x4.
Assume H12: x1 = binunion x3 (Sing x4).
Claim L13: ...
...
Claim L14: ...
...
Claim L15: ...
...
Claim L16: ...
...
Claim L17: ...
...
Claim L18: ...
...
Claim L19: ...
...
Apply unknownprop_385697d8441c5f778e16c97ac3fd3d842ad68223c4d1882ce705cb1375e178b5 with x4, λ x5 . x4 = x5False leaving 7 subgoals.
Apply setminusI with u22, u17, x4 leaving 2 subgoals.
Apply H0 with x4.
Apply H6 with x4.
The subproof is completed by applying H9.
The subproof is completed by applying L17.
Assume H20: x4 = u17.
Apply unknownprop_385697d8441c5f778e16c97ac3fd3d842ad68223c4d1882ce705cb1375e178b5 with x2, λ x5 . x2 = x5False leaving 7 subgoals.
The subproof is completed by applying L19.
Assume H21: x2 = u17.
Apply In_irref with x2.
Apply H21 with λ x5 x6 . x6x2.
Apply H20 with λ x5 x6 . x5x2.
The subproof is completed by applying L13.
Assume H21: x2 = u18.
Apply L14.
Apply H20 with λ x5 x6 . 0aea9.. x6 x2.
Apply H21 with λ x5 x6 . 0aea9.. u17 x6.
The subproof is completed by applying unknownprop_851ce1d42fc45a6a636e8fc2b70c48e32b67c56703b52990b181e84673fc1c05.
Assume H21: x2 = u19.
Claim L22: x3u12
Let x5 of type ι be given.
Assume H22: x5x3.
Apply unknownprop_14e19ebc7e16f882d3be4482dbe497cecb7597969c9cae0a9f87fe87a0ee217a with x5, λ x6 . x6x3x6u12 leaving 19 subgoals.
Apply H20 with λ x6 x7 . x3x6, x5 leaving 2 subgoals.
The subproof is completed by applying H11.
The subproof is completed by applying H22.
Assume H23: 0x3.
The subproof is completed by applying unknownprop_a2ef0c58cfd090f3c9e6e7916f6b56032d6bdd4de509aa9fb32f7308f99daf5a.
Assume H23: u1x3.
The subproof is completed by applying unknownprop_b1b74a38cb206cf70f2e2bbc4ccd3cbdbf8c8df3defd64ff8c8a7258b3a2047a.
Assume H23: u2x3.
The subproof is completed by applying unknownprop_987ba5536dee4e8ff190eaeed4d2bb3ab5d85c45e6623acb29ce14f019a19681.
Assume H23: u3x3.
The subproof is completed by applying unknownprop_cf5ceb5c8b16071a67f4b018bbc8955118e3633f8bcf650790850107ad2027ee.
Assume H23: u4x3.
The subproof is completed by applying unknownprop_4fce167ccdcc7fb45429dcf8a3db15dc462c457fe760841310c58bc94a706ed3.
Assume H23: u5x3.
The subproof is completed by applying unknownprop_75d836f404cbbeae78f524a2ea7f26282023039d9accd25589aa1c1720bb8121.
Assume H23: u6x3.
The subproof is completed by applying unknownprop_73e4e62694bfb193433658c654297b6ed3eb985937a9e426b510b83e68de24d1.
Assume H23: u7x3.
The subproof is completed by applying unknownprop_a31357c4255c39823e518ff3fc8fa06c75e6252111ceae22b3d4f1c89a01d10b.
Assume H23: u8x3.
The subproof is completed by applying unknownprop_89f074e5696e72c1d0b8f6c7a30d07f4920551bfce89ff386ae0ecf5a82d48e4.
Assume H23: u9x3.
The subproof is completed by applying unknownprop_2453a2b3484043c8ce568faca0a1096a3c2d75e863532a7d5d6a9f964c17a76f.
Assume H23: u10x3.
The subproof is completed by applying unknownprop_e58cb2c6f977d1b0d5350ed902991ead1b80327bc1b160612a3fd1cd20c9fd3b.
Assume H23: u11x3.
The subproof is completed by applying unknownprop_2e87f3f906df12d03519748b94abd9f72cc673eb197d25aaf167a3737a0cc14b.
Assume H23: u12x3.
Apply FalseE with u12u12.
Apply H2 with u12, x2 leaving 4 subgoals.
Apply L16 with u12.
The subproof is completed by applying H23.
The subproof is completed by applying H5.
Assume H24: u12 = x2.
Apply L18.
Apply H24 with λ x6 x7 . x6u17.
The subproof is completed by applying unknownprop_b7a4a37161804b376f25028de76b0714142123cbd842ba90c86afe8baa6a8a9e.
Apply H21 with λ x6 x7 . 0aea9.. u12 x7.
Assume H24: u12u22.
Assume H25: u19u22.
Apply unknownprop_750bbfd209cbbc2638525ff49836b8d57a9d46b5b0085915178b80f8528ec332 with λ x6 x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . 94591.. x7 (55574.. u19) = λ x8 x9 . x8.
...
...
...
...
...
...
Apply unknownprop_82a4043338dce48d58934c215ccdbe85be545db6869ac125d5e92b153cac28bb with x3 leaving 3 subgoals.
The subproof is completed by applying L22.
Apply equip_atleastp with u5, x3.
The subproof is completed by applying H8.
Let x5 of type ι be given.
Assume H23: x5x3.
Let x6 of type ι be given.
Assume H24: x6x3.
Assume H25: x5 = x6∀ x7 : ο . x7.
Assume H26: TwoRamseyGraph_3_6_17 x5 x6.
Apply H2 with x5, x6 leaving 4 subgoals.
Apply L16 with x5.
The subproof is completed by applying H23.
Apply L16 with x6.
The subproof is completed by applying H24.
The subproof is completed by applying H25.
Apply unknownprop_331d7f66eeb37dc381bf2e3606d3b3c601f9b8768b689e8985564581b76a5fdc with x5, x6 leaving 3 subgoals.
Apply unknownprop_46307dd0174fa26aaad235a343e8b6e719715159a425e7aad1f30f101888c98c with x5.
Apply L22 with x5.
The subproof is completed by applying H23.
Apply unknownprop_46307dd0174fa26aaad235a343e8b6e719715159a425e7aad1f30f101888c98c with x6.
Apply L22 with x6.
The subproof is completed by applying H24.
The subproof is completed by applying H26.
...
...
...
...
...
...
...
...