Let x0 of type ι → (ι → ι → ι) → (ι → ι) → (ι → ι → ο) → ι → ο be given.
Let x1 of type ι be given.
Let x2 of type ι → ι → ι be given.
Let x3 of type ι → ι be given.
Let x4 of type ι → ι → ο be given.
Let x5 of type ι be given.
Assume H0:
∀ x6 : ι → ι → ι . (∀ x7 . prim1 x7 x1 ⟶ ∀ x8 . prim1 x8 x1 ⟶ x2 x7 x8 = x6 x7 x8) ⟶ ∀ x7 : ι → ι . (∀ x8 . prim1 x8 x1 ⟶ x3 x8 = x7 x8) ⟶ ∀ x8 : ι → ι → ο . (∀ x9 . prim1 x9 x1 ⟶ ∀ x10 . prim1 x10 x1 ⟶ iff (x4 x9 x10) (x8 x9 x10)) ⟶ x0 x1 x6 x7 x8 x5 = x0 x1 x2 x3 x4 x5.
Apply unknownprop_65b816444de57457f1c789231a42b642eb46addfdf0a5e485c477bf4a51e7c89 with
x1,
x2,
x3,
x4,
x5,
λ x6 x7 . x0 x6 (e3162.. (f482f.. (03f8d.. x1 x2 x3 x4 x5) (4ae4a.. 4a7ef..))) (f482f.. (f482f.. (03f8d.. x1 x2 x3 x4 x5) (4ae4a.. (4ae4a.. 4a7ef..)))) (2b2e3.. (f482f.. (03f8d.. x1 x2 x3 x4 x5) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (f482f.. (03f8d.. x1 x2 x3 x4 x5) (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) = x0 x1 x2 x3 x4 x5.
Apply unknownprop_17176d8a02df5fdd45f1c61e7edd0a0660313bddfe874e4832062f44f1a0675d with
x1,
x2,
x3,
x4,
x5,
λ x6 x7 . x0 x1 (e3162.. (f482f.. (03f8d.. x1 x2 x3 x4 x5) (4ae4a.. 4a7ef..))) (f482f.. (f482f.. (03f8d.. x1 x2 x3 x4 x5) (4ae4a.. (4ae4a.. 4a7ef..)))) (2b2e3.. (f482f.. (03f8d.. x1 x2 x3 x4 x5) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) x6 = x0 x1 x2 x3 x4 x5.
Apply H0 with
e3162.. (f482f.. (03f8d.. x1 x2 x3 x4 x5) (4ae4a.. 4a7ef..)),
f482f.. (f482f.. (03f8d.. x1 x2 x3 x4 x5) (4ae4a.. (4ae4a.. 4a7ef..))),
2b2e3.. (f482f.. (03f8d.. x1 x2 x3 x4 x5) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) leaving 3 subgoals.
The subproof is completed by applying unknownprop_9a5741423aa2dc66d36e7ecf7a37b3fd742da71a02f2cb5aee028428187a5ea4 with x1, x2, x3, x4, x5.
The subproof is completed by applying unknownprop_7e0a7ff7f5f6233fafadf817a30f50626bcc2bcc44229e6ba877803a542777ff with x1, x2, x3, x4, x5.
Let x6 of type ι be given.
Let x7 of type ι be given.
Apply unknownprop_5c8b29a53bcfb2f08adfa0f430a22906136cdc99ef3521728b31c3220ccffea0 with
x1,
x2,
x3,
x4,
x5,
x6,
x7,
λ x8 x9 : ο . iff (x4 x6 x7) x8 leaving 3 subgoals.
The subproof is completed by applying H1.
The subproof is completed by applying H2.
The subproof is completed by applying iff_refl with x4 x6 x7.