Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Assume H0: SNo x0.
Assume H1: ∀ x1 . x1SNoS_ omega(∀ x2 . x2omegaSNoLt (abs_SNo (add_SNo x1 (minus_SNo x0))) (eps_ x2))x1 = x0.
Assume H2: ∀ x1 . x1omega∃ x2 . and (x2SNoS_ omega) (and (SNoLt x2 x0) (SNoLt x0 (add_SNo x2 (eps_ x1)))).
Claim L3: ...
...
Let x1 of type ο be given.
Assume H4: ∀ x2 . and (x2setexp (SNoS_ omega) omega) (∀ x3 . x3omegaand (and (SNoLt (ap x2 x3) x0) (SNoLt x0 (add_SNo (ap x2 x3) (eps_ x3)))) (∀ x4 . x4x3SNoLt (ap x2 x4) (ap x2 x3)))x1.
Apply H4 with lam omega (λ x2 . nat_primrec (prim0 (λ x3 . and (and (x3SNoS_ omega) (SNoLt x3 x0)) (SNoLt x0 (add_SNo x3 (eps_ 0))))) (λ x3 x4 . prim0 (λ x5 . and (and (and (x5SNoS_ omega) (SNoLt x5 x0)) (SNoLt x0 (add_SNo x5 (eps_ (ordsucc x3))))) (SNoLt x4 x5))) x2).
Apply andI with lam omega (λ x2 . nat_primrec (prim0 (λ x3 . and (and (x3SNoS_ omega) (SNoLt x3 x0)) (SNoLt x0 (add_SNo x3 (eps_ 0))))) (λ x3 x4 . prim0 (λ x5 . and (and (and (x5SNoS_ omega) (SNoLt x5 x0)) (SNoLt x0 (add_SNo x5 (eps_ (ordsucc x3))))) (SNoLt x4 x5))) x2)setexp (SNoS_ omega) omega, ∀ x2 . ...and (and (SNoLt (ap (lam omega (λ x3 . nat_primrec (prim0 (λ x4 . and (and (x4SNoS_ omega) (SNoLt x4 x0)) (SNoLt x0 (add_SNo x4 (eps_ 0))))) (λ x4 x5 . prim0 (λ x6 . and (and (and (x6SNoS_ omega) (SNoLt x6 x0)) (SNoLt x0 (add_SNo x6 (eps_ (ordsucc x4))))) (SNoLt x5 x6))) x3)) x2) x0) (SNoLt x0 (add_SNo (ap (lam omega (λ x3 . nat_primrec (prim0 (λ x4 . and (and (x4SNoS_ omega) (SNoLt x4 x0)) (SNoLt x0 (add_SNo x4 (eps_ 0))))) (λ x4 x5 . prim0 (λ x6 . and ... ...)) ...)) ...) ...))) ... leaving 2 subgoals.
...
...