Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ιιι be given.
Let x2 of type ιιι be given.
Let x3 of type ι be given.
Assume H0: ∀ x4 . prim1 x4 x0∀ x5 . prim1 x5 x0x1 x4 x5 = x2 x4 x5.
Claim L1: eb53d.. x0 x1 = eb53d.. x0 x2
Apply unknownprop_dbb26cd650ab4f49eb7a56474ebdc3b4a46f79fd66ae7129c609d055a8e1a150 with x0, x1, x2.
The subproof is completed by applying H0.
Apply L1 with λ x4 x5 . 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (λ x6 . If_i (x6 = 4a7ef..) x0 (If_i (x6 = 4ae4a.. 4a7ef..) (eb53d.. x0 x1) x3)) = 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (λ x6 . If_i (x6 = 4a7ef..) x0 (If_i (x6 = 4ae4a.. 4a7ef..) x4 x3)).
Let x4 of type ιιο be given.
Assume H2: x4 (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (λ x5 . If_i (x5 = 4a7ef..) x0 (If_i (x5 = 4ae4a.. 4a7ef..) (eb53d.. x0 x1) x3))) (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (λ x5 . If_i (x5 = 4a7ef..) x0 (If_i (x5 = 4ae4a.. 4a7ef..) (eb53d.. x0 x1) x3))).
The subproof is completed by applying H2.