Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Assume H0: 0b8ef.. x0 = 6c5f4.. x1.
Claim L1: prim0 (prim1 (λ x2 . prim1 (λ x3 . prim0 (prim0 (prim0 x3 x2) (prim0 x3 x3)) (prim0 (prim0 x2 x2) (prim0 x3 x3))))) (prim1 (λ x2 . x2)) = prim0 (prim1 (λ x2 . prim1 (λ x3 . prim0 (prim0 (prim0 x3 x2) (prim0 x3 x2)) (prim0 (prim0 x3 x3) (prim0 x2 x3))))) (prim1 (λ x2 . x2))∀ x2 : ο . x2
Assume H1: prim0 (prim1 (λ x2 . prim1 (λ x3 . prim0 (prim0 (prim0 x3 x2) (prim0 x3 x3)) (prim0 (prim0 x2 x2) (prim0 x3 x3))))) (prim1 (λ x2 . x2)) = prim0 (prim1 (λ x2 . prim1 (λ x3 . prim0 (prim0 (prim0 x3 x2) (prim0 x3 x2)) (prim0 (prim0 x3 x3) (prim0 x2 x3))))) (prim1 (λ x2 . x2)).
Apply unknownprop_ffff67c8af57907058601518623f56f08b1980b5dd3f4aa47f3f04cf81b40e90 with 236c6.., 236c6...
Apply unknownprop_3b55668ebff4b5090f31d28781617fd36508e9eaa3458c4a604deaa4db096497 with prim0 236c6.. 236c6.., prim0 236c6.. 236c6.., prim0 236c6.. 236c6.., 236c6...
Apply unknownprop_3b55668ebff4b5090f31d28781617fd36508e9eaa3458c4a604deaa4db096497 with prim0 (prim0 236c6.. 236c6..) 236c6.., prim0 (prim0 236c6.. 236c6..) (prim0 236c6.. 236c6..), prim0 (prim0 236c6.. 236c6..) 236c6.., prim0 (prim0 236c6.. 236c6..) 236c6...
Apply unknownprop_d095413e3d6561ecf3858ab767f11a6b26abbe476371cd3ff75f5d610cbf6aa9 with prim0 (prim0 (prim0 236c6.. 236c6..) 236c6..) (prim0 (prim0 236c6.. 236c6..) (prim0 236c6.. 236c6..)), prim0 (prim0 236c6.. 236c6..) (prim0 (prim0 236c6.. 236c6..) (prim0 236c6.. 236c6..)), prim0 (prim0 (prim0 236c6.. 236c6..) 236c6..) (prim0 (prim0 236c6.. 236c6..) 236c6..), prim0 (prim0 (prim0 236c6.. 236c6..) (prim0 236c6.. 236c6..)) (prim0 236c6.. (prim0 236c6.. 236c6..)).
Apply unknownprop_ede725485070ff6bd749ebc14706bb968573533ce94967136e2d0850c2f5f853 with λ x2 . prim0 (prim0 (prim0 x2 236c6..) (prim0 x2 x2)) (prim0 (prim0 236c6.. 236c6..) (prim0 x2 x2)), λ x2 . prim0 (prim0 (prim0 x2 236c6..) (prim0 x2 ...)) ..., ....
...
Apply L1.
Apply unknownprop_d095413e3d6561ecf3858ab767f11a6b26abbe476371cd3ff75f5d610cbf6aa9 with prim0 (prim1 (λ x2 . prim1 (λ x3 . prim0 (prim0 (prim0 x3 x2) (prim0 x3 x3)) (prim0 (prim0 x2 x2) (prim0 x3 x3))))) (prim1 (λ x2 . x2)), x0, prim0 (prim1 (λ x2 . prim1 (λ x3 . prim0 (prim0 (prim0 x3 x2) (prim0 x3 x2)) (prim0 (prim0 x3 x3) (prim0 x2 x3))))) (prim1 (λ x2 . x2)), x1.
The subproof is completed by applying H0.