Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type (ιι) → (ιι) → ιιι be given.
Let x1 of type (ι(ιιιι) → (ιι) → (ιι) → ιι) → ι(ιιι) → ιι be given.
Let x2 of type ((ιι) → (((ιι) → ιι) → ι) → ι) → (ιι) → (ιι) → ι be given.
Let x3 of type ((((ιιι) → (ιι) → ιι) → ((ιι) → ιι) → ι) → (ιι) → ((ιι) → ι) → ι) → ((((ιι) → ι) → ιι) → ((ιι) → ιι) → ι) → ι be given.
Assume H0: ∀ x4 . ∀ x5 : (ι → ι → ι → ι)(ι → ι → ι) → ι . ∀ x6 . ∀ x7 : (ι → ι) → ι . x3 (λ x8 : ((ι → ι → ι)(ι → ι)ι → ι)((ι → ι)ι → ι) → ι . λ x9 : ι → ι . λ x10 : (ι → ι) → ι . setsum (Inj1 0) 0) (λ x8 : ((ι → ι) → ι)ι → ι . λ x9 : (ι → ι)ι → ι . setsum 0 (x3 (λ x10 : ((ι → ι → ι)(ι → ι)ι → ι)((ι → ι)ι → ι) → ι . λ x11 : ι → ι . λ x12 : (ι → ι) → ι . x3 (λ x13 : ((ι → ι → ι)(ι → ι)ι → ι)((ι → ι)ι → ι) → ι . λ x14 : ι → ι . λ x15 : (ι → ι) → ι . x1 (λ x16 . λ x17 : ι → ι → ι → ι . λ x18 x19 : ι → ι . λ x20 . 0) 0 (λ x16 x17 . 0) 0) (λ x13 : ((ι → ι) → ι)ι → ι . λ x14 : (ι → ι)ι → ι . x3 (λ x15 : ((ι → ι → ι)(ι → ι)ι → ι)((ι → ι)ι → ι) → ι . λ x16 : ι → ι . λ x17 : (ι → ι) → ι . 0) (λ x15 : ((ι → ι) → ι)ι → ι . λ x16 : (ι → ι)ι → ι . 0))) (λ x10 : ((ι → ι) → ι)ι → ι . λ x11 : (ι → ι)ι → ι . x10 (λ x12 : ι → ι . Inj0 0) (Inj0 0)))) = x5 (λ x8 x9 x10 . setsum (setsum (x3 (λ x11 : ((ι → ι → ι)(ι → ι)ι → ι)((ι → ι)ι → ι) → ι . λ x12 : ι → ι . λ x13 : (ι → ι) → ι . Inj1 0) (λ x11 : ((ι → ι) → ι)ι → ι . λ x12 : (ι → ι)ι → ι . Inj1 0)) (Inj0 x8)) (x1 (λ x11 . λ x12 : ι → ι → ι → ι . λ x13 x14 : ι → ι . λ x15 . x14 (x13 0)) (x7 (λ x11 . x8)) (λ x11 x12 . 0) (x1 (λ x11 . λ x12 : ι → ι → ι → ι . λ x13 x14 : ι → ι . λ x15 . Inj0 0) (x7 (λ x11 . 0)) (λ x11 x12 . x2 (λ x13 : ι → ι . λ x14 : ((ι → ι)ι → ι) → ι . 0) (λ x13 . 0) (λ x13 . 0)) 0))) (λ x8 x9 . 0).
Apply FalseE with ...............(∀ x4 . ∀ x5 : (((ι → ι) → ι)ι → ι)ι → (ι → ι)ι → ι . ∀ x6 : (((ι → ι) → ι) → ι) → ι . ∀ x7 : ι → ((ι → ι) → ι)(ι → ι)ι → ι . x0 (λ x8 . Inj1 0) (λ x8 . setsum 0 x8) 0 (Inj0 (x5 (λ x8 : (ι → ι) → ι . λ x9 . 0) 0 (λ x8 . 0) (x3 (λ x8 : ((ι → ι → ι)(ι → ι)ι → ι)((ι → ι)ι → ι) → ι . λ x9 : ι → ι . λ x10 : (ι → ι) → ι . 0) (λ x8 : ((ι → ι) → ι)ι → ι . λ x9 : (ι → ι)ι → ι . 0)))) = setsum (setsum 0 (setsum (Inj0 (setsum 0 0)) (x0 (λ x8 . x5 (λ x9 : (ι → ι) → ι . λ x10 . 0) 0 ... 0) ... ... ...))) ...)(∀ x4 . ∀ x5 : ι → ((ι → ι)ι → ι)(ι → ι) → ι . ∀ x6 . ∀ x7 : (ι → ι → ι)ι → ι . x0 (λ x8 . x1 (λ x9 . λ x10 : ι → ι → ι → ι . λ x11 x12 : ι → ι . λ x13 . 0) (x5 (Inj0 x8) (λ x9 : ι → ι . λ x10 . x8) (λ x9 . x0 (λ x10 . x7 (λ x11 x12 . 0) 0) (λ x10 . 0) x9 (x7 (λ x10 x11 . 0) 0))) (λ x9 x10 . x10) (x7 (λ x9 x10 . x7 (λ x11 x12 . x12) x8) (x7 (λ x9 x10 . Inj1 0) (x0 (λ x9 . 0) (λ x9 . 0) 0 0)))) (λ x8 . x7 (λ x9 x10 . x3 (λ x11 : ((ι → ι → ι)(ι → ι)ι → ι)((ι → ι)ι → ι) → ι . λ x12 : ι → ι . λ x13 : (ι → ι) → ι . x11 (λ x14 : ι → ι → ι . λ x15 : ι → ι . λ x16 . x0 (λ x17 . 0) (λ x17 . 0) 0 0) (λ x14 : ι → ι . λ x15 . Inj1 0)) (λ x11 : ((ι → ι) → ι)ι → ι . λ x12 : (ι → ι)ι → ι . x11 (λ x13 : ι → ι . x11 (λ x14 : ι → ι . 0) 0) (Inj0 0))) (x7 (λ x9 x10 . x8) (x3 (λ x9 : ((ι → ι → ι)(ι → ι)ι → ι)((ι → ι)ι → ι) → ι . λ x10 : ι → ι . λ x11 : (ι → ι) → ι . x8) (λ x9 : ((ι → ι) → ι)ι → ι . λ x10 : (ι → ι)ι → ι . Inj1 0)))) x4 x6 = setsum (x7 (λ x8 x9 . 0) x4) 0)False.
...