Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ιιι be given.
Let x4 of type ιιι be given.
Let x5 of type ιιο be given.
Let x6 of type ιιι be given.
Apply explicit_Reals_E with x0, x1, x2, x3, x4, x5, ...∀ x7 : ο . (..................................................................(∀ x8 . ...∀ x9 . ...(λ x10 . prim0 (λ x11 . and (x11x0) (x10 = x6 ((λ x12 . prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x12 = x6 x13 x14)))) x10) x11))) ((λ x10 x11 . x6 (x3 (x4 ((λ x12 . prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x12 = x6 x13 x14)))) x10) ((λ x12 . prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x12 = x6 x13 x14)))) x11)) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 ((λ x12 . prim0 (λ x13 . and (x13x0) (x12 = x6 ((λ x14 . prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x14 = x6 x15 x16)))) x12) x13))) x10) ((λ x12 . prim0 (λ x13 . and (x13x0) (x12 = x6 ((λ x14 . prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x14 = x6 x15 x16)))) x12) x13))) x11)))) (x3 (x4 ((λ x12 . prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x12 = x6 x13 x14)))) x10) ((λ x12 . prim0 (λ x13 . and (x13x0) (x12 = x6 ((λ x14 . prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x14 = x6 x15 x16)))) x12) x13))) x11)) (x4 ((λ x12 . prim0 (λ x13 . and (x13x0) (x12 = x6 ((λ x14 . prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x14 = x6 x15 x16)))) x12) x13))) x10) ((λ x12 . prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x12 = x6 x13 x14)))) x11)))) x8 x9) = x3 (x4 ((λ x10 . prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x10 = x6 x11 x12)))) x8) ((λ x10 . prim0 (λ x11 . ...)) ...)) ...)x7)x7.
...