Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ο be given.
Assume H0: ∀ x1 : ι → ι → ι . (∃ x2 x3 : ι → ι → ι . ∃ x4 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p IrreflexiveTransitiveReln BinRelnHom struct_id struct_comp x1 x2 x3 x4)x0.
Apply H0 with 3fa3a...
Let x1 of type ο be given.
Assume H1: ∀ x2 : ι → ι → ι . (∃ x3 : ι → ι → ι . ∃ x4 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p IrreflexiveTransitiveReln BinRelnHom struct_id struct_comp 3fa3a.. x2 x3 x4)x1.
Apply H1 with λ x2 x3 . lam (ap x2 0) (λ x4 . Inj0 x4).
Let x2 of type ο be given.
Assume H2: ∀ x3 : ι → ι → ι . (∃ x4 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p IrreflexiveTransitiveReln BinRelnHom struct_id struct_comp 3fa3a.. (λ x5 x6 . lam (ap x5 0) (λ x7 . Inj0 x7)) x3 x4)x2.
Apply H2 with λ x3 x4 . lam (ap x4 0) (λ x5 . Inj1 x5).
Let x3 of type ο be given.
Assume H3: ∀ x4 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p IrreflexiveTransitiveReln BinRelnHom struct_id struct_comp 3fa3a.. (λ x5 x6 . lam (ap x5 0) (λ x7 . Inj0 x7)) (λ x5 x6 . lam (ap x6 0) (λ x7 . Inj1 x7)) x4x3.
Apply H3 with λ x4 x5 x6 x7 x8 . lam (setsum (ap x4 0) (ap x5 0)) (λ x9 . combine_funcs (ap x4 0) (ap x5 0) (λ x10 . ap x7 x10) (λ x10 . ap x8 x10) x9).
Apply unknownprop_8014f2189a8e9a90722a83ab5f5b4d52ecd6d5c686aac8aa2eb5343a4f9f7780 with IrreflexiveTransitiveReln leaving 2 subgoals.
Let x4 of type ι be given.
Apply H4 with struct_r x4.
Assume H5: struct_r x4.
Assume H6: unpack_r_o x4 (λ x5 . λ x6 : ι → ι → ο . and (∀ x7 . x7x5not (x6 x7 x7)) (∀ x7 . x7x5∀ x8 . x8x5∀ x9 . x9x5x6 x7 x8x6 x8 x9x6 x7 x9)).
The subproof is completed by applying H5.
Let x4 of type ι be given.
Let x5 of type ι be given.
Apply unknownprop_2d7c7a9916fa2967cfb4d546f4e37c43b64368ed4a60618379328e066e9b7e0e with x4, λ x6 . IrreflexiveTransitiveReln (3fa3a.. x6 x5) leaving 2 subgoals.
The subproof is completed by applying H4.
Let x6 of type ι be given.
Let x7 of type ιιο be given.
Assume H6: ∀ x8 . x8x6not (x7 x8 x8).
Assume H7: ∀ x8 . x8x6∀ x9 . x9x6∀ x10 . x10x6x7 x8 x9x7 x9 x10x7 x8 x10.
Apply unknownprop_2d7c7a9916fa2967cfb4d546f4e37c43b64368ed4a60618379328e066e9b7e0e with x5, λ x8 . IrreflexiveTransitiveReln (3fa3a.. (pack_r x6 x7) x8) leaving 2 subgoals.
The subproof is completed by applying H5.
Let x8 of type ι be given.
Let x9 of type ιιο be given.
Assume H8: ∀ x10 . x10x8not (x9 x10 x10).
Assume H9: ∀ x10 . x10x8∀ x11 . x11x8∀ x12 . x12x8x9 x10 x11x9 x11 x12x9 x10 x12.
Apply unknownprop_2b21d9fc231c558646c467d14a820e3bc5f0cce785ca7db2a0cb0c92dadc07f5 with x6, x7, x8, x9, λ x10 x11 . IrreflexiveTransitiveReln x11.
Apply unknownprop_dbb6377af3127d2bf8cd888143d856b4a86f0ec975822a440e0313d91ee07474 with setsum x6 x8, λ x10 x11 . or (and (and ... ...) ...) ... leaving 2 subgoals.
...
...