Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ιιο be given.
Assume H0: ∀ x2 x3 . x1 x2 x3x1 x3 x2.
Assume H1: ∀ x2 . x2x0atleastp u3 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x1 x3 x4).
Assume H2: ∀ x2 . x2x0atleastp u6 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x1 x3 x4)).
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Assume H3: x2x0.
Assume H4: x3x0.
Assume H5: x4x0.
Assume H6: x5x0.
Assume H7: ∀ x6 . x6x2nIn x6 x5.
Assume H8: ∀ x6 . x6x2nIn x6 x3.
Assume H9: ∀ x6 . x6x4nIn x6 x2.
Assume H10: ∀ x6 . x6x4nIn x6 x3.
Assume H11: ∀ x6 . x6x4nIn x6 x5.
Assume H12: ∀ x6 . x6x3nIn x6 x5.
Let x6 of type ι be given.
Let x7 of type ι be given.
Let x8 of type ι be given.
Let x9 of type ι be given.
Let x10 of type ι be given.
Assume H13: x4 = SetAdjoin (SetAdjoin (UPair x6 x7) x8) x9.
Assume H14: x10x5.
Assume H15: x7 = x6∀ x11 : ο . x11.
Assume H16: x8 = x6∀ x11 : ο . x11.
Assume H17: x9 = x6∀ x11 : ο . x11.
Assume H18: x8 = x7∀ x11 : ο . x11.
Assume H19: x9 = x7∀ x11 : ο . x11.
Assume H20: x9 = x8∀ x11 : ο . x11.
Assume H21: x1 x6 x7.
Assume H22: x1 x7 x8.
Assume H23: x1 x8 x9.
Assume H24: x1 x9 x6.
Assume H25: ∀ x11 . x11x4(x11 = x10∀ x12 : ο . x12)not (x1 x11 x10)atleastp (binintersect (DirGraphOutNeighbors x0 x1 x11) (DirGraphOutNeighbors x0 x1 x10)) u2.
Assume H26: x6binintersect (DirGraphOutNeighbors x0 x1 x7) (DirGraphOutNeighbors x0 x1 x10).
Assume H27: x6binintersect (DirGraphOutNeighbors x0 x1 x9) (DirGraphOutNeighbors x0 x1 x10).
Assume H28: not (x1 x7 x10).
Assume H29: not (x1 x9 x10).
Let x11 of type ιι be given.
Let x12 of type ιι be given.
Assume H30: ∀ x13 . x13x4x11 x13x2.
Assume H31: ∀ x13 . x13x4x11 x13DirGraphOutNeighbors x0 x1 x13.
Assume H32: ∀ x13 . x13x4x12 x13x3.
...