Let x0 of type ι be given.
Let x1 of type ι → ι → ο be given.
Assume H0: ∀ x2 x3 . x1 x2 x3 ⟶ x1 x3 x2.
Assume H1:
∀ x2 . x2 ⊆ x0 ⟶ atleastp u3 x2 ⟶ not (∀ x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ (x3 = x4 ⟶ ∀ x5 : ο . x5) ⟶ x1 x3 x4).
Assume H2:
∀ x2 . x2 ⊆ x0 ⟶ atleastp u6 x2 ⟶ not (∀ x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ (x3 = x4 ⟶ ∀ x5 : ο . x5) ⟶ not (x1 x3 x4)).
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Assume H3: x2 ⊆ x0.
Assume H4: x3 ⊆ x0.
Assume H5: x4 ⊆ x0.
Assume H6: x5 ⊆ x0.
Assume H7:
∀ x6 . x6 ∈ x2 ⟶ nIn x6 x5.
Assume H8:
∀ x6 . x6 ∈ x2 ⟶ nIn x6 x3.
Assume H9:
∀ x6 . x6 ∈ x4 ⟶ nIn x6 x2.
Assume H10:
∀ x6 . x6 ∈ x4 ⟶ nIn x6 x3.
Assume H11:
∀ x6 . x6 ∈ x4 ⟶ nIn x6 x5.
Assume H12:
∀ x6 . x6 ∈ x3 ⟶ nIn x6 x5.
Let x6 of type ι be given.
Let x7 of type ι be given.
Let x8 of type ι be given.
Let x9 of type ι be given.
Let x10 of type ι be given.
Assume H14: x10 ∈ x5.
Assume H15: x7 = x6 ⟶ ∀ x11 : ο . x11.
Assume H16: x8 = x6 ⟶ ∀ x11 : ο . x11.
Assume H17: x9 = x6 ⟶ ∀ x11 : ο . x11.
Assume H18: x8 = x7 ⟶ ∀ x11 : ο . x11.
Assume H19: x9 = x7 ⟶ ∀ x11 : ο . x11.
Assume H20: x9 = x8 ⟶ ∀ x11 : ο . x11.
Assume H21: x1 x6 x7.
Assume H22: x1 x7 x8.
Assume H23: x1 x8 x9.
Assume H24: x1 x9 x6.
Assume H28:
not (x1 x7 x10).
Assume H29:
not (x1 x9 x10).
Let x11 of type ι → ι be given.
Let x12 of type ι → ι be given.
Assume H30: ∀ x13 . x13 ∈ x4 ⟶ x11 x13 ∈ x2.
Assume H32: ∀ x13 . x13 ∈ x4 ⟶ x12 x13 ∈ x3.