Search for blocks/addresses/...
Proofgold Proof
pf
Let x0 of type
ι
be given.
Let x1 of type
ι
be given.
Let x2 of type
ι
be given.
Assume H0:
prim0
(
prim1
(
λ x3 .
prim1
(
λ x4 .
prim0
(
prim0
(
prim0
x4
x3
)
(
prim0
x3
x4
)
)
(
prim0
(
prim0
x4
x4
)
(
prim0
x3
x3
)
)
)
)
)
x0
=
prim0
(
prim0
(
prim1
(
λ x3 .
prim1
(
λ x4 .
prim0
(
prim0
(
prim0
x4
x3
)
(
prim0
x3
x4
)
)
(
prim0
(
prim0
x4
x4
)
(
prim0
x3
x3
)
)
)
)
)
x1
)
x2
.
Apply unknownprop_9a58ed0dda94ea5c039481d3f039b3c649c669e5786e881b81bb21041e489c11 with
λ x3 .
prim1
(
λ x4 .
prim0
(
prim0
(
prim0
x4
x3
)
(
prim0
x3
x4
)
)
(
prim0
(
prim0
x4
x4
)
(
prim0
x3
x3
)
)
)
,
prim1
(
λ x3 .
prim1
(
λ x4 .
prim0
(
prim0
(
prim0
x4
x3
)
(
prim0
x3
x4
)
)
(
prim0
(
prim0
x4
x4
)
(
prim0
x3
x3
)
)
)
)
,
x1
.
Apply unknownprop_d095413e3d6561ecf3858ab767f11a6b26abbe476371cd3ff75f5d610cbf6aa9 with
prim1
(
λ x3 .
prim1
(
λ x4 .
prim0
(
prim0
(
prim0
x4
x3
)
(
prim0
x3
x4
)
)
(
prim0
(
prim0
x4
x4
)
(
prim0
x3
x3
)
)
)
)
,
x0
,
prim0
(
prim1
(
λ x3 .
prim1
(
λ x4 .
prim0
(
prim0
(
prim0
x4
x3
)
(
prim0
x3
x4
)
)
(
prim0
(
prim0
x4
x4
)
(
prim0
x3
x3
)
)
)
)
)
x1
,
x2
.
The subproof is completed by applying H0.
■