Search for blocks/addresses/...
Proofgold Proof
pf
Let x0 of type
ι
→
(
ι
→
ο
) →
ο
be given.
Let x1 of type
ι
→
(
ι
→
ο
) →
ο
be given.
Assume H0:
PNoLt_pwise
x0
x1
.
Let x2 of type
ι
be given.
Assume H1:
ordinal
x2
.
Assume H2:
PNo_lenbdd
x2
x0
.
Assume H3:
PNo_lenbdd
x2
x1
.
Claim L4:
...
...
Apply L4 with
∃ x3 .
and
(
∃ x4 :
ι → ο
.
PNo_least_rep2
x0
x1
x3
x4
)
(
∀ x4 x5 :
ι → ο
.
PNo_least_rep2
x0
x1
x3
x4
⟶
PNo_least_rep2
x0
x1
x3
x5
⟶
x4
=
x5
)
.
Let x3 of type
ι
be given.
Assume H5:
(
λ x4 .
and
(
and
(
ordinal
x4
)
(
∃ x5 :
ι → ο
.
PNo_strict_imv
x0
x1
x4
x5
)
)
(
∀ x5 .
x5
∈
x4
⟶
not
(
∃ x6 :
ι → ο
.
PNo_strict_imv
x0
x1
x5
x6
)
)
)
x3
.
Apply H5 with
∃ x4 .
and
(
∃ x5 :
ι → ο
.
PNo_least_rep2
x0
x1
x4
x5
)
(
∀ x5 x6 :
ι → ο
.
PNo_least_rep2
x0
x1
x4
x5
⟶
PNo_least_rep2
x0
x1
x4
x6
⟶
x5
=
x6
)
.
Assume H6:
and
(
ordinal
x3
)
(
∃ x4 :
ι → ο
.
PNo_strict_imv
x0
x1
x3
x4
)
.
Apply H6 with
(
∀ x4 .
x4
∈
x3
⟶
not
(
∃ x5 :
ι → ο
.
PNo_strict_imv
x0
x1
x4
x5
)
)
⟶
∃ x4 .
and
(
∃ x5 :
ι → ο
.
PNo_least_rep2
x0
x1
x4
x5
)
(
∀ x5 x6 :
ι → ο
.
PNo_least_rep2
x0
x1
x4
x5
⟶
PNo_least_rep2
x0
x1
x4
x6
⟶
x5
=
x6
)
.
Assume H7:
ordinal
x3
.
Assume H8:
∃ x4 :
ι → ο
.
PNo_strict_imv
x0
x1
x3
x4
.
Assume H9:
∀ x4 .
x4
∈
x3
⟶
not
(
∃ x5 :
ι → ο
.
PNo_strict_imv
x0
x1
x4
x5
)
.
Apply H8 with
∃ x4 .
and
(
∃ x5 :
ι → ο
.
PNo_least_rep2
x0
x1
x4
x5
)
(
∀ x5 x6 :
ι → ο
.
PNo_least_rep2
x0
x1
x4
x5
⟶
PNo_least_rep2
x0
x1
x4
x6
⟶
x5
=
x6
)
.
Let x4 of type
ι
→
ο
be given.
Assume H10:
PNo_strict_imv
x0
x1
x3
x4
.
Let x5 of type
ο
be given.
Assume H11:
∀ x6 .
and
(
∃ x7 :
ι → ο
.
PNo_least_rep2
x0
x1
x6
x7
)
(
∀ x7 x8 :
ι → ο
.
PNo_least_rep2
x0
x1
x6
x7
⟶
PNo_least_rep2
x0
x1
x6
x8
⟶
x7
=
x8
)
⟶
x5
.
Apply H11 with
x3
.
Apply andI with
∃ x6 :
ι → ο
.
PNo_least_rep2
x0
x1
x3
x6
,
∀ x6 x7 :
ι → ο
.
PNo_least_rep2
x0
x1
x3
x6
⟶
PNo_least_rep2
x0
x1
x3
x7
⟶
x6
=
x7
leaving 2 subgoals.
Let x6 of type
ο
be given.
Assume H12:
∀ x7 :
ι → ο
.
PNo_least_rep2
x0
x1
x3
x7
⟶
x6
.
Apply H12 with
λ x7 .
and
(
x7
∈
x3
)
(
x4
x7
)
.
Apply andI with
PNo_least_rep
x0
x1
x3
(
λ x7 .
and
(
x7
∈
x3
)
(
x4
x7
)
)
,
∀ x7 .
nIn
x7
x3
⟶
not
(
and
(
x7
∈
x3
)
(
x4
x7
)
)
leaving 2 subgoals.
Apply and3I with
ordinal
...
,
...
,
...
leaving 3 subgoals.
...
...
...
...
...
■