Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Assume H0: SNo x0.
Apply binunionI1 with {x1 ∈ ordsucc (SNoLev x0)|(λ x2 . or (x2x0) (x2 = SNoLev x0)) x1}, {(λ x2 . SetAdjoin x2 (Sing 1)) x1|x1 ∈ ordsucc (SNoLev x0),not ((λ x2 . or (x2x0) (x2 = SNoLev x0)) x1)}, SNoLev x0.
Apply SepI with ordsucc (SNoLev x0), λ x1 . (λ x2 . or (x2x0) (x2 = SNoLev x0)) x1, SNoLev x0 leaving 2 subgoals.
The subproof is completed by applying ordsuccI2 with SNoLev x0.
Apply orIR with SNoLev x0x0, SNoLev x0 = SNoLev x0.
Let x1 of type ιιο be given.
Assume H1: x1 (SNoLev x0) (SNoLev x0).
The subproof is completed by applying H1.