Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ιιο be given.
Assume H0: ∀ x1 x2 . x0 x1 x2x0 x2 x1.
Assume H1: ∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3).
Assume H2: ∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)).
Let x1 of type ι be given.
Assume H3: x1u18.
Let x2 of type ο be given.
Assume H4: ∀ x3 . ...∀ x4 . ...∀ x5 . ...∀ x6 . ...∀ x7 . .........x5 = {x8 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) ...)|...}x7 = setminus {x8 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x8) (DirGraphOutNeighbors u18 x0 x1)) u2} x6∀ x8 . x8x5∀ x9 . x9x5∀ x10 . x10x5∀ x11 . x11x5x0 x8 x9x0 x9 x10x0 x10 x11x0 x11 x8(x9 = x8∀ x12 : ο . x12)(x10 = x8∀ x12 : ο . x12)(x11 = x8∀ x12 : ο . x12)(x10 = x9∀ x12 : ο . x12)(x11 = x9∀ x12 : ο . x12)(x11 = x10∀ x12 : ο . x12)not (x0 x8 x10)not (x0 x9 x11)x5 = SetAdjoin (SetAdjoin (UPair x8 x9) x10) x11(∀ x12 . x12u18∀ x13 : ο . (x12 = x1x13)(x12 = x3x13)(x12x4x13)(x12x6x13)(x12x5x13)(x12x7x13)x13)(∀ x12 . x12x5not (x0 x3 x12))equip x4 u4equip x5 u4equip x6 u4equip x7 u4(∀ x12 . x12x6nIn x12 x7)(∀ x12 . x12x5∃ x13 . and (x13x6) (x0 x12 x13))(∀ x12 . x12x6not (x0 x1 x12))(∀ x12 . x12x6equip (binintersect (DirGraphOutNeighbors u18 x0 x12) (DirGraphOutNeighbors u18 x0 x1)) u2)x2.
...