Let x0 of type ι → ι → ο be given.
Let x1 of type ι → ι → ο be given.
Let x2 of type ι → ι → ο be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Let x6 of type ι be given.
Let x7 of type ι be given.
Let x8 of type ι → ι be given.
Let x9 of type ι → ι be given.
Let x10 of type ι → ι → ι be given.
Let x11 of type ι → ι → ι be given.
Let x12 of type ι → ι → ι be given.
Let x13 of type ι → ο be given.
Let x14 of type ι → ο be given.
Let x15 of type ι → ο be given.
Let x16 of type ι → ο be given.
Let x17 of type ι → ο be given.
Let x18 of type ι → ο be given.
Let x19 of type ι → ο be given.
Let x20 of type ι → ο be given.
Let x21 of type ι → ο be given.
Let x22 of type ι → ο be given.
Let x23 of type ι → ο be given.
Assume H0:
∀ x24 . iff (x0 x24 x4) (x24 = x3).
Assume H1:
∀ x24 . iff (x0 x24 x5) (or (x24 = x3) (x24 = x4)).
Assume H2:
∀ x24 x25 . iff (x0 x25 (x8 x24)) (x1 x25 x24).
Assume H3: ∀ x24 . x1 x24 x3 ⟶ x24 = x3.
Assume H4: ∀ x24 x25 x26 . x1 x24 x26 ⟶ x1 x25 x26 ⟶ x1 (x10 x24 x25) x26.
Assume H5:
∀ x24 x25 . x0 x25 x24 ⟶ not (x1 x24 (x12 x24 (x9 x25))).
Assume H6:
∀ x24 x25 . not (x0 x25 x24) ⟶ x13 x24 ⟶ x14 (x10 x24 (x9 x25)).
Assume H7: ∀ x24 x25 . x0 x25 x24 ⟶ x1 (x9 x25) x24.
Assume H8:
∀ x24 x25 x26 . x1 x26 (x10 x24 x25) ⟶ not (x1 x26 x24) ⟶ not (x1 x26 x25) ⟶ not (x1 (x10 x24 x25) x26) ⟶ or (x13 x24) (x13 x25).
Assume H9:
∀ x24 x25 . x17 (x10 x24 x25) ⟶ or (x16 x24) (x13 x25).
Assume H10: ∀ x24 x25 . x0 x25 x24 ⟶ x23 x24 ⟶ x22 (x12 x24 (x9 x25)).
Assume H11:
∀ x24 x25 . x18 (x10 x24 x25) ⟶ or (x17 x24) (x13 x25).
Assume H12: ∀ x24 . x0 x3 x24 ⟶ x1 x4 x24.
Assume H13:
∀ x24 x25 . x1 x25 (x9 x24) ⟶ or (x25 = x3) (x25 = x9 x24).
Assume H14:
not (x0 x3 (x9 x5)).
Assume H15:
not (x0 x4 (x8 (x9 x4))).
Assume H16:
not (x0 x4 (x8 (x9 x5))).
Assume H17:
not (x0 (x9 (x9 x4)) x5).
Assume H18:
not (x0 (x9 x5) x5).
Assume H19: x1 (x9 (x9 x4)) (x10 (x9 x4) (x9 (x9 x4))).
Assume H20:
not (x0 (x9 x4) x6).
Assume H21:
not (x0 (x9 x4) (x12 x6 (x9 x4))).
Assume H22:
∀ x24 . x1 x24 (x8 (x9 x4)) ⟶ not (x0 x3 x24) ⟶ x1 x24 (x9 (x9 x4)).
Assume H23:
∀ x24 . ... ⟶ ... ⟶ ... ⟶ or (or (or (x24 = x3) (x24 = x4)) ...) ....