Search for blocks/addresses/...

Proofgold Proof

pf
Claim L0: ...
...
Let x0 of type ιιιιιιι be given.
Let x1 of type ιιιιιιι be given.
Let x2 of type ιιιιιιι be given.
Let x3 of type ιιιιιιι be given.
Assume H1: a4ee9.. x0.
Assume H2: Church6_p x1.
Assume H3: a4ee9.. x2.
Assume H4: Church6_p x3.
Apply H1 with λ x4 : ι → ι → ι → ι → ι → ι → ι . (x4 = x2x1 = x3False)(TwoRamseyGraph_4_6_Church6_squared_a x4 x1 x2 x3 = λ x5 x6 . x5)TwoRamseyGraph_4_6_Church6_squared_b x4 x1 x2 x3 = λ x5 x6 . x5 leaving 5 subgoals.
Apply H2 with λ x4 : ι → ι → ι → ι → ι → ι → ι . ((λ x5 x6 x7 x8 x9 x10 . x5) = x2x4 = x3False)(TwoRamseyGraph_4_6_Church6_squared_a (λ x5 x6 x7 x8 x9 x10 . x5) x4 x2 x3 = λ x5 x6 . x5)TwoRamseyGraph_4_6_Church6_squared_b (λ x5 x6 x7 x8 x9 x10 . x5) x4 x2 x3 = λ x5 x6 . x5 leaving 6 subgoals.
Apply H3 with λ x4 : ι → ι → ι → ι → ι → ι → ι . ((λ x5 x6 x7 x8 x9 x10 . x5) = x4(λ x5 x6 x7 x8 x9 x10 . x5) = x3False)(TwoRamseyGraph_4_6_Church6_squared_a (λ x5 x6 x7 x8 x9 x10 . x5) (λ x5 x6 x7 x8 x9 x10 . x5) x4 x3 = λ x5 x6 . x5)TwoRamseyGraph_4_6_Church6_squared_b (λ x5 x6 x7 x8 x9 x10 . x5) (λ x5 x6 x7 x8 x9 x10 . x5) x4 x3 = λ x5 x6 . x5 leaving 5 subgoals.
Apply H4 with λ x4 : ι → ι → ι → ι → ι → ι → ι . (((λ x5 x6 x7 x8 x9 x10 . x5) = λ x5 x6 x7 x8 x9 x10 . x5)(λ x5 x6 x7 x8 x9 x10 . x5) = x4False)(TwoRamseyGraph_4_6_Church6_squared_a (λ x5 x6 x7 x8 x9 x10 . x5) (λ x5 x6 x7 x8 x9 x10 . x5) (λ x5 x6 x7 x8 x9 x10 . x5) x4 = λ x5 x6 . x5)TwoRamseyGraph_4_6_Church6_squared_b (λ x5 x6 x7 x8 x9 x10 . x5) (λ x5 x6 x7 x8 x9 x10 . x5) (λ x5 x6 x7 x8 x9 x10 . x5) x4 = λ x5 x6 . x5 leaving 6 subgoals.
Assume H5: ((λ x4 x5 x6 x7 x8 x9 . x4) = λ x4 x5 x6 x7 x8 x9 . x4)((λ x4 x5 x6 x7 x8 x9 . x4) = λ x4 x5 x6 x7 x8 x9 . x4)False.
Apply FalseE with (TwoRamseyGraph_4_6_Church6_squared_a (λ x4 x5 x6 x7 x8 x9 . x4) (λ x4 x5 x6 x7 x8 x9 . x4) (λ x4 x5 x6 x7 x8 x9 . x4) (λ x4 x5 x6 x7 x8 x9 . x4) = λ x4 x5 . x4)TwoRamseyGraph_4_6_Church6_squared_b (λ x4 x5 x6 x7 x8 x9 . x4) (λ x4 x5 x6 x7 x8 x9 . x4) (λ x4 x5 x6 x7 x8 x9 . x4) (λ x4 x5 x6 x7 x8 x9 . x4) = λ x4 x5 . x4.
Apply H5 leaving 2 subgoals.
Let x4 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
Assume H6: x4 (λ x5 x6 x7 x8 x9 x10 . x5) (λ x5 x6 x7 x8 x9 x10 . x5).
The subproof is completed by applying H6.
Let x4 of type (ιιιιιιι) → (ιιιιιιι) → ο be given.
Assume H6: x4 (λ x5 x6 x7 x8 x9 x10 . x5) (λ x5 x6 x7 x8 x9 x10 . x5).
The subproof is completed by applying H6.
Assume H5: ((λ x4 x5 x6 x7 x8 x9 . x4) = λ x4 x5 x6 x7 x8 x9 . x4)((λ x4 x5 x6 x7 x8 x9 . x4) = λ x4 x5 x6 x7 x8 x9 . x5)False.
Assume H6: TwoRamseyGraph_4_6_Church6_squared_a (λ x4 x5 x6 x7 x8 x9 . x4) (λ x4 x5 x6 x7 x8 x9 . x4) (λ x4 x5 x6 x7 x8 x9 . x4) (λ x4 x5 x6 x7 x8 x9 . x5) = λ x4 x5 . x4.
Apply FalseE with TwoRamseyGraph_4_6_Church6_squared_b (λ x4 x5 x6 x7 x8 x9 . x4) (λ x4 x5 x6 x7 x8 x9 . x4) (λ x4 x5 x6 x7 x8 x9 . x4) (λ x4 x5 x6 x7 x8 x9 . x5) = λ x4 x5 . x4.
Apply L0.
The subproof is completed by applying H6.
Assume H5: ((λ x4 x5 x6 x7 x8 x9 . x4) = λ x4 x5 x6 x7 x8 x9 . x4)((λ x4 x5 x6 x7 x8 x9 . x4) = λ x4 x5 x6 x7 x8 x9 . x6)False.
Assume H6: TwoRamseyGraph_4_6_Church6_squared_a (λ x4 x5 x6 x7 x8 x9 . x4) (λ x4 x5 x6 x7 x8 x9 . x4) (λ x4 x5 x6 x7 x8 x9 . x4) (λ x4 x5 x6 x7 x8 x9 . x6) = λ x4 x5 . x4.
Let x4 of type (ιιι) → (ιιι) → ο be given.
Assume H7: x4 (TwoRamseyGraph_4_6_Church6_squared_b (λ x5 x6 x7 x8 x9 x10 . x5) (λ x5 x6 x7 x8 x9 x10 . x5) (λ x5 x6 x7 x8 x9 x10 . x5) (λ x5 x6 x7 x8 x9 x10 . x7)) (λ x5 x6 . x5).
The subproof is completed by applying H7.
Assume H5: (λ x4 x5 x6 x7 x8 x9 . x4) = ...((λ x4 x5 x6 x7 x8 x9 . x4) = λ x4 x5 x6 x7 x8 x9 . x7)False.
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...