Claim L0: (λ x0 . λ x1 : ι → ι . ∀ x2 . x2 ∈ x0 ⟶ x1 (x1 x2) = x1 x2) 1 (λ x0 . 0)
Let x0 of type ι be given.
Assume H0: x0 ∈ 1.
Claim L1:
(λ x0 . λ x1 : ι → ι . ∀ x2 . x2 ∈ x0 ⟶ x1 (x1 x2) = x1 x2) omega (λ x0 . x0)
Let x0 of type ι be given.
Assume H1:
x0 ∈ omega.
Let x1 of type ι → ι → ο be given.
Assume H2: x1 x0 x0.
The subproof is completed by applying H2.
Let x0 of type ο be given.
Apply H2 with
pack_u 1 (λ x1 . 0).
Let x1 of type ο be given.
Apply H3 with
λ x2 . lam (ap x2 0) (λ x3 . 0).
Let x2 of type ο be given.
Apply H4 with
pack_u omega (λ x3 . x3).
Let x3 of type ο be given.
Apply H5 with
lam 1 (λ x4 . 0).
Let x4 of type ο be given.
Apply H6 with
lam omega (λ x5 . ordsucc x5).
Let x5 of type ο be given.
Apply H7 with
λ x6 x7 x8 . lam omega (λ x9 . nat_primrec (ap x7 0) (λ x10 x11 . ap x8 x11) x9).
Apply unknownprop_1897dd9d62036e24b5a15a6305884877d2b2984b6fa2f5de30c61ce53aecce82 with
λ x6 . λ x7 : ι → ι . ∀ x8 . x8 ∈ x6 ⟶ x7 (x7 x8) = x7 x8 leaving 3 subgoals.
The subproof is completed by applying unknownprop_170570cd9c8bbfca7e90abaab69c5d65b36e383209d6e68011d09548573ef745.
The subproof is completed by applying L0.
The subproof is completed by applying L1.