Search for blocks/addresses/...

Proofgold Proof

pf
Claim L0: (λ x0 . λ x1 : ι → ι . ∀ x2 . x2x0x1 (x1 x2) = x1 x2) 1 (λ x0 . 0)
Let x0 of type ι be given.
Assume H0: x01.
...
Claim L1: (λ x0 . λ x1 : ι → ι . ∀ x2 . x2x0x1 (x1 x2) = x1 x2) omega (λ x0 . x0)
Let x0 of type ι be given.
Assume H1: x0omega.
Let x1 of type ιιο be given.
Assume H2: x1 x0 x0.
The subproof is completed by applying H2.
Let x0 of type ο be given.
Assume H2: ∀ x1 . (∃ x2 : ι → ι . ∃ x3 x4 x5 . ∃ x6 : ι → ι → ι → ι . MetaCat_nno_p 9f253.. UnaryFuncHom struct_id struct_comp x1 x2 x3 x4 x5 x6)x0.
Apply H2 with pack_u 1 (λ x1 . 0).
Let x1 of type ο be given.
Assume H3: ∀ x2 : ι → ι . (∃ x3 x4 x5 . ∃ x6 : ι → ι → ι → ι . MetaCat_nno_p 9f253.. UnaryFuncHom struct_id struct_comp (pack_u 1 (λ x7 . 0)) x2 x3 x4 x5 x6)x1.
Apply H3 with λ x2 . lam (ap x2 0) (λ x3 . 0).
Let x2 of type ο be given.
Assume H4: ∀ x3 . (∃ x4 x5 . ∃ x6 : ι → ι → ι → ι . MetaCat_nno_p 9f253.. UnaryFuncHom struct_id struct_comp (pack_u 1 (λ x7 . 0)) (λ x7 . lam (ap x7 0) (λ x8 . 0)) x3 x4 x5 x6)x2.
Apply H4 with pack_u omega (λ x3 . x3).
Let x3 of type ο be given.
Assume H5: ∀ x4 . (∃ x5 . ∃ x6 : ι → ι → ι → ι . MetaCat_nno_p 9f253.. UnaryFuncHom struct_id struct_comp (pack_u 1 (λ x7 . 0)) (λ x7 . lam (ap x7 0) (λ x8 . 0)) (pack_u omega (λ x7 . x7)) x4 x5 x6)x3.
Apply H5 with lam 1 (λ x4 . 0).
Let x4 of type ο be given.
Assume H6: ∀ x5 . (∃ x6 : ι → ι → ι → ι . MetaCat_nno_p 9f253.. UnaryFuncHom struct_id struct_comp (pack_u 1 (λ x7 . 0)) (λ x7 . lam (ap x7 0) (λ x8 . 0)) (pack_u omega (λ x7 . x7)) (lam 1 (λ x7 . 0)) x5 x6)x4.
Apply H6 with lam omega (λ x5 . ordsucc x5).
Let x5 of type ο be given.
Assume H7: ∀ x6 : ι → ι → ι → ι . MetaCat_nno_p 9f253.. UnaryFuncHom struct_id struct_comp (pack_u 1 (λ x7 . 0)) (λ x7 . lam (ap x7 0) (λ x8 . 0)) (pack_u omega (λ x7 . x7)) (lam 1 (λ x7 . 0)) (lam omega (λ x7 . ordsucc x7)) x6x5.
Apply H7 with λ x6 x7 x8 . lam omega (λ x9 . nat_primrec (ap x7 0) (λ x10 x11 . ap x8 x11) x9).
Apply unknownprop_1897dd9d62036e24b5a15a6305884877d2b2984b6fa2f5de30c61ce53aecce82 with λ x6 . λ x7 : ι → ι . ∀ x8 . x8x6x7 (x7 x8) = x7 x8 leaving 3 subgoals.
The subproof is completed by applying unknownprop_170570cd9c8bbfca7e90abaab69c5d65b36e383209d6e68011d09548573ef745.
The subproof is completed by applying L0.
The subproof is completed by applying L1.