Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ιιο be given.
Let x1 of type ιιο be given.
Let x2 of type ιιο be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Let x6 of type ι be given.
Let x7 of type ι be given.
Let x8 of type ιι be given.
Let x9 of type ιι be given.
Let x10 of type ιιι be given.
Let x11 of type ιιι be given.
Let x12 of type ιιι be given.
Let x13 of type ιο be given.
Let x14 of type ιο be given.
Let x15 of type ιο be given.
Let x16 of type ιο be given.
Let x17 of type ιο be given.
Let x18 of type ιο be given.
Let x19 of type ιο be given.
Let x20 of type ιο be given.
Let x21 of type ιο be given.
Let x22 of type ιο be given.
Let x23 of type ιο be given.
Assume H0: ∀ x24 . iff (x13 x24) (∃ x25 . and (x0 x25 x24) (not (x1 x24 (x8 x25)))).
Assume H1: ∀ x24 . iff (x17 x24) (∃ x25 . and (x1 x25 x24) (and (not (x1 x24 x25)) (x16 x25))).
Assume H2: ∀ x24 . not (x0 x24 x24).
Assume H3: ∀ x24 x25 x26 . x1 x26 x25x1 (x12 x24 x25) (x12 x24 x26).
Assume H4: ∀ x24 x25 . x0 x24 x25x13 (x8 x25).
Assume H5: ∀ x24 x25 . x0 x25 x24not (x18 x24)not (x17 (x12 x24 (x9 x25))).
Assume H6: ∀ x24 x25 . x1 x24 x25x14 x24x14 x25.
Assume H7: ∀ x24 x25 . not (x17 x24)x13 (x11 x24 x25)not (x15 (x12 x24 x25)).
Assume H8: ∀ x24 x25 . x0 x25 x24x16 x24x15 (x12 x24 (x9 x25)).
Assume H9: ∀ x24 x25 . x0 x25 x24x14 (x12 x24 (x9 x25))x15 x24.
Assume H10: ∀ x24 x25 . x2 x24 x25x19 x24x19 x25x21 (x10 x24 x25).
Assume H11: not (x0 x3 x3).
Assume H12: not (x3 = x12 (x8 x5) x5).
Assume H13: x0 (x9 x4) (x10 (x9 x4) (x9 (x9 x4))).
Assume H14: not (x1 x5 (x9 x5)).
Assume H15: not (x1 (x9 x4) (x9 x5)).
Assume H16: not (x1 (x9 x4) (x9 (x9 x4))).
Assume H17: not (x0 (x9 x4) x6).
Assume H18: not (x0 (x9 x4) (x12 (x8 x5) (x8 (x9 x4)))).
Assume H19: ∀ x24 . x1 x24 (x8 (x9 x4))not (x0 (x9 x4) x24)not (x0 x3 x24)or (or (or (x24 = x3) (x24 = x4)) (x24 = x9 (x9 x4))) (x24 = x8 (x9 x4)).
Assume H20: not (x0 (x12 (x8 x5) (x8 (x9 x5))) (x12 (x8 x5) (x9 x5))).
Assume H21: not (x0 (x9 (x9 x4)) x6).
Assume H22: not (x3 = ...).
...