Search for blocks/addresses/...

Proofgold Proof

pf
Claim L0: ...
...
Claim L1: ...
...
Apply L1 with ∀ x0 x1 x2 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . Church17_p x0Church17_p x1Church17_p x2(x0 = x1∀ x3 : ο . x3)(x0 = x2∀ x3 : ο . x3)(x1 = x2∀ x3 : ο . x3)(TwoRamseyGraph_3_6_Church17 x0 x1 = λ x3 x4 . x3)(TwoRamseyGraph_3_6_Church17 x0 x2 = λ x3 x4 . x3)(TwoRamseyGraph_3_6_Church17 x1 x2 = λ x3 x4 . x3)False.
Let x0 of type (ιιιιιιιιιιιιιιιιιι) → (ιιιιιιιιιιιιιιιιιι) → (ιιιιιιιιιιιιιιιιιι) → ο be given.
Assume H2: ∀ x1 x2 x3 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . x0 x1 x2 x3(x1 = x2∀ x4 : ο . x4)(x1 = x3∀ x4 : ο . x4)(x2 = x3∀ x4 : ο . x4)(TwoRamseyGraph_3_6_Church17 x1 x2 = λ x4 x5 . x4)(TwoRamseyGraph_3_6_Church17 x1 x3 = λ x4 x5 . x4)(TwoRamseyGraph_3_6_Church17 x2 x3 = λ x4 x5 . x4)False.
Assume H3: ∀ x1 x2 x3 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . x1 = x2x0 x1 x2 x3.
Assume H4: ∀ x1 x2 x3 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . x1 = x3x0 x1 x2 x3.
Assume H5: ∀ x1 x2 x3 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . x2 = x3x0 x1 x2 x3.
Assume H6: ∀ x1 x2 x3 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . (TwoRamseyGraph_3_6_Church17 x1 x2 = λ x4 x5 . x5)x0 x1 x2 x3.
Assume H7: ∀ x1 x2 x3 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . (TwoRamseyGraph_3_6_Church17 x1 x3 = λ x4 x5 . x5)x0 x1 x2 x3.
Assume H8: ∀ x1 x2 x3 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . (TwoRamseyGraph_3_6_Church17 x2 x3 = λ x4 x5 . x5)x0 x1 x2 x3.
Let x1 of type ιιιιιιιιιιιιιιιιιι be given.
Let x2 of type ιιιιιιιιιιιιιιιιιι be given.
Let x3 of type ιιιιιιιιιιιιιιιιιι be given.
Assume H9: Church17_p x1.
Assume H10: Church17_p x2.
Assume H11: Church17_p x3.
Apply H2 with x1, x2, x3.
Apply H9 with λ x4 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . x0 x4 x2 x3 leaving 17 subgoals.
Apply H10 with λ x4 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . x0 (λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 . x5) x4 x3 leaving 17 subgoals.
Apply H3 with λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 . x4, λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 . x4, x3.
Let x4 of type (ιιιιιιιιιιιιιιιιιι) → (ιιιιιιιιιιιιιιιιιι) → ο be given.
Assume H12: x4 (λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 . x5) (λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 . x5).
The subproof is completed by applying H12.
Apply H11 with λ x4 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . x0 (λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 . x5) (λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 . x6) x4 leaving 17 subgoals.
Apply H4 with λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 . x4, λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 . x5, λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 . x4.
Let x4 of type (ιιιιιιιιιιιιιιιιιι) → (ιιιιιιιιιιιιιιιιιι) → ο be given.
Assume H12: x4 (λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 . x5) (λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 . x5).
The subproof is completed by applying H12.
Apply H5 with λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 . x4, λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 . x5, λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 . x5.
Let x4 of type (ιιιιιιιιιιιιιιιιιι) → (ιιιιιιιιιιιιιιιιιι) → ο be given.
Assume H12: x4 (λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 . x6) (λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 . x6).
The subproof is completed by applying H12.
Apply H8 with λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 . x4, λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 . x5, λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 . x6.
Let x4 of type (ιιι) → (ιιι) → ο be given.
Assume H12: x4 (TwoRamseyGraph_3_6_Church17 (λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 . x6) (λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 . x7)) (λ x5 x6 . x6).
The subproof is completed by applying H12.
Apply H7 with λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 . x4, λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 . x5, λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 . x7.
Let x4 of type (ιιι) → (ιιι) → ο be given.
Assume H12: x4 (TwoRamseyGraph_3_6_Church17 (λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 . x5) (λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 . x8)) (λ x5 x6 . x6).
The subproof is completed by applying H12.
Apply H7 with λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 . x4, λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 . x5, λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 . x8.
Let x4 of type (ιιι) → (ιιι) → ο be given.
Assume H12: x4 (TwoRamseyGraph_3_6_Church17 (λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 . x5) (λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 . x9)) (λ x5 x6 . x6).
The subproof is completed by applying H12.
Apply H7 with λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 . x4, λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 . x5, λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 . x9.
Let x4 of type (ιιι) → (ιιι) → ο be given.
Assume H12: ....
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...