Apply unknownprop_1406677f0460d5e610e1d51da3b7548f6b94ae5487a864770cbbc36f240c53d4 with
equip (setminus (setprod u6 u6) (Sing (lam 2 (λ x0 . If_i (x0 = 0) u5 u5)))) u35.
Let x0 of type ι → ι be given.
Apply H0 with
equip (setminus (setprod u6 u6) (Sing (lam 2 (λ x1 . If_i (x1 = 0) u5 u5)))) u35.
Apply H1 with
(∀ x1 . x1 ∈ u36 ⟶ ∃ x2 . and (x2 ∈ setprod u6 u6) (x0 x2 = x1)) ⟶ equip (setminus (setprod u6 u6) (Sing (lam 2 (λ x1 . If_i (x1 = 0) u5 u5)))) u35.
Assume H3:
∀ x1 . x1 ∈ setprod u6 u6 ⟶ ∀ x2 . x2 ∈ setprod u6 u6 ⟶ x0 x1 = x0 x2 ⟶ x1 = x2.
Assume H4:
∀ x1 . x1 ∈ u36 ⟶ ∃ x2 . and (x2 ∈ setprod u6 u6) (x0 x2 = x1).
Apply H2 with
lam 2 (λ x1 . If_i (x1 = 0) ... ...).
Apply equip_tra with
setminus (setprod u6 u6) (Sing (lam 2 (λ x1 . If_i (x1 = 0) u5 u5))),
setminus u36 (Sing (x0 (lam 2 (λ x1 . If_i (x1 = 0) u5 u5)))),
u35 leaving 2 subgoals.
Let x1 of type ο be given.
Apply H8 with
x0.
Apply unknownprop_20ec276501d9ecb91e40cc4525c5a2c0798ab59924056be0d591bc4dcbb72338 with
setprod u6 u6,
u36,
lam 2 (λ x2 . If_i (x2 = 0) u5 u5),
x0 leaving 2 subgoals.
The subproof is completed by applying L6.
The subproof is completed by applying H0.
Apply equip_sym with
u35,
setminus u36 (Sing (x0 (lam 2 (λ x1 . If_i (x1 = 0) u5 u5)))).
Apply unknownprop_6f2f2ee827c101dfeaaaeb47a7a909e08072923ce7f6e05ca4a992c53bc3f486 with
u35,
x0 (lam 2 (λ x1 . If_i (x1 = 0) u5 u5)) leaving 2 subgoals.
The subproof is completed by applying unknownprop_a3e012c06fe7317676acef57a26f1aa9ca775c2316f0b3234deabb524335c66f.
The subproof is completed by applying L7.