Search for blocks/addresses/...

Proofgold Proof

pf
Apply unknownprop_1406677f0460d5e610e1d51da3b7548f6b94ae5487a864770cbbc36f240c53d4 with equip (setminus (setprod u6 u6) (Sing (lam 2 (λ x0 . If_i (x0 = 0) u5 u5)))) u35.
Let x0 of type ιι be given.
Assume H0: bij (setprod u6 u6) u36 x0.
Apply H0 with equip (setminus (setprod u6 u6) (Sing (lam 2 (λ x1 . If_i (x1 = 0) u5 u5)))) u35.
Assume H1: and (∀ x1 . x1setprod u6 u6x0 x1u36) (∀ x1 . x1setprod u6 u6∀ x2 . x2setprod u6 u6x0 x1 = x0 x2x1 = x2).
Apply H1 with (∀ x1 . x1u36∃ x2 . and (x2setprod u6 u6) (x0 x2 = x1))equip (setminus (setprod u6 u6) (Sing (lam 2 (λ x1 . If_i (x1 = 0) u5 u5)))) u35.
Assume H2: ∀ x1 . x1setprod u6 u6x0 x1u36.
Assume H3: ∀ x1 . x1setprod u6 u6∀ x2 . x2setprod u6 u6x0 x1 = x0 x2x1 = x2.
Assume H4: ∀ x1 . x1u36∃ x2 . and (x2setprod u6 u6) (x0 x2 = x1).
Claim L5: ...
...
Claim L6: ...
...
Claim L7: x0 (lam 2 (λ x1 . If_i (x1 = 0) u5 u5))u36
Apply H2 with lam 2 (λ x1 . If_i (x1 = 0) ... ...).
...
Apply equip_tra with setminus (setprod u6 u6) (Sing (lam 2 (λ x1 . If_i (x1 = 0) u5 u5))), setminus u36 (Sing (x0 (lam 2 (λ x1 . If_i (x1 = 0) u5 u5)))), u35 leaving 2 subgoals.
Let x1 of type ο be given.
Assume H8: ∀ x2 : ι → ι . bij (setminus (setprod u6 u6) (Sing (lam 2 (λ x3 . If_i (x3 = 0) u5 u5)))) (setminus u36 (Sing (x0 (lam 2 (λ x3 . If_i (x3 = 0) u5 u5))))) x2x1.
Apply H8 with x0.
Apply unknownprop_20ec276501d9ecb91e40cc4525c5a2c0798ab59924056be0d591bc4dcbb72338 with setprod u6 u6, u36, lam 2 (λ x2 . If_i (x2 = 0) u5 u5), x0 leaving 2 subgoals.
The subproof is completed by applying L6.
The subproof is completed by applying H0.
Apply equip_sym with u35, setminus u36 (Sing (x0 (lam 2 (λ x1 . If_i (x1 = 0) u5 u5)))).
Apply unknownprop_6f2f2ee827c101dfeaaaeb47a7a909e08072923ce7f6e05ca4a992c53bc3f486 with u35, x0 (lam 2 (λ x1 . If_i (x1 = 0) u5 u5)) leaving 2 subgoals.
The subproof is completed by applying unknownprop_a3e012c06fe7317676acef57a26f1aa9ca775c2316f0b3234deabb524335c66f.
The subproof is completed by applying L7.