Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ιο be given.
Assume H0: ∀ x1 . x0 x1struct_p x1.
Assume H1: x0 (pack_p 1 (λ x1 . True)).
Assume H2: x0 (pack_p omega (λ x1 . True)).
Apply and5I with MetaCat_terminal_p x0 UnaryPredHom struct_id struct_comp (pack_p 1 (λ x1 . True)) (λ x1 . lam (ap x1 0) (λ x2 . 0)), x0 (pack_p omega (λ x1 . True)), UnaryPredHom (pack_p 1 (λ x1 . True)) (pack_p omega (λ x1 . True)) (lam 1 (λ x1 . 0)), UnaryPredHom (pack_p omega (λ x1 . True)) (pack_p omega (λ x1 . True)) (lam omega (λ x1 . ordsucc x1)), ∀ x1 x2 x3 . ...UnaryPredHom (pack_p 1 ...) ... ...UnaryPredHom x1 x1 x3and (and (and (UnaryPredHom (pack_p omega (λ x4 . True)) x1 ((λ x4 x5 x6 . lam omega (λ x7 . nat_primrec (ap x5 0) (λ x8 x9 . ap x6 x9) x7)) x1 x2 x3)) (struct_comp (pack_p 1 (λ x4 . True)) (pack_p omega (λ x4 . True)) x1 ((λ x4 x5 x6 . lam omega (λ x7 . nat_primrec (ap x5 0) (λ x8 x9 . ap x6 x9) x7)) x1 x2 x3) (lam 1 (λ x4 . 0)) = x2)) (struct_comp (pack_p omega (λ x4 . True)) (pack_p omega (λ x4 . True)) x1 ((λ x4 x5 x6 . lam omega (λ x7 . nat_primrec (ap x5 0) (λ x8 x9 . ap x6 x9) x7)) x1 x2 x3) (lam omega (λ x4 . ordsucc x4)) = struct_comp (pack_p omega (λ x4 . True)) x1 x1 x3 ((λ x4 x5 x6 . lam omega (λ x7 . nat_primrec (ap x5 0) (λ x8 x9 . ap x6 x9) x7)) x1 x2 x3))) (∀ x4 . UnaryPredHom (pack_p omega (λ x5 . True)) x1 x4struct_comp (pack_p 1 (λ x5 . True)) (pack_p omega (λ x5 . True)) x1 x4 (lam 1 (λ x5 . 0)) = x2struct_comp (pack_p omega (λ x5 . True)) (pack_p omega (λ x5 . True)) x1 x4 (lam omega (λ x5 . ordsucc x5)) = struct_comp (pack_p omega (λ x5 . True)) x1 x1 x3 x4x4 = (λ x5 x6 x7 . lam omega (λ x8 . nat_primrec (ap x6 0) (λ x9 x10 . ap x7 x10) x8)) x1 x2 x3) leaving 5 subgoals.
...
...
...
...
...