Let x0 of type ι → ο be given.
Let x1 of type ι → ι → ι be given.
Assume H0: ∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3).
Assume H1: ∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4).
Assume H2: ∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2.
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Let x6 of type ι be given.
Let x7 of type ι be given.
Let x8 of type ι be given.
Assume H3: x0 x2.
Assume H4: x0 x3.
Assume H5: x0 x4.
Assume H6: x0 x5.
Assume H7: x0 x6.
Assume H8: x0 x7.
Assume H9: x0 x8.
Apply H1 with
x6,
x7,
x8,
λ x9 x10 . x1 x2 (x1 x3 (x1 x4 (x1 x5 x10))) = x1 x7 (x1 x2 (x1 x5 (x1 x3 (x1 x4 (x1 x8 x6))))) leaving 4 subgoals.
The subproof is completed by applying H7.
The subproof is completed by applying H8.
The subproof is completed by applying H9.
Apply H2 with
x6,
x8,
λ x9 x10 . x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x7 x10)))) = x1 x7 (x1 x2 (x1 x5 (x1 x3 (x1 x4 (x1 x8 x6))))) leaving 3 subgoals.
The subproof is completed by applying H7.
The subproof is completed by applying H9.
Apply unknownprop_3b39fc95e46858a6d8a4225b4f684847e3f85cd5e1c9c1634b5ee9278952c0b8 with
x0,
x1,
x2,
x3,
x4,
x5,
x7,
x1 x8 x6 leaving 8 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H1.
The subproof is completed by applying H3.
The subproof is completed by applying H4.
The subproof is completed by applying H5.
The subproof is completed by applying H6.
The subproof is completed by applying H8.
Apply H0 with
x8,
x6 leaving 2 subgoals.
The subproof is completed by applying H9.
The subproof is completed by applying H7.