Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ο be given.
Assume H0: ∀ x1 : ι → ι → ι . (∃ x2 x3 : ι → ι → ι . ∃ x4 : ι → ι → ι → ι → ι → ι . ∃ x5 x6 : ι → ι → ι . ∃ x7 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p 8b17e.. BinRelnHom struct_id struct_comp x1 x2 x3 x4 x5 x6 x7)x0.
Apply H0 with λ x1 x2 . pack_r 0 (λ x3 x4 . False).
Let x1 of type ο be given.
Assume H1: ∀ x2 : ι → ι → ι . (∃ x3 : ι → ι → ι . ∃ x4 : ι → ι → ι → ι → ι → ι . ∃ x5 x6 : ι → ι → ι . ∃ x7 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p 8b17e.. BinRelnHom struct_id struct_comp (λ x8 x9 . pack_r 0 (λ x10 x11 . False)) x2 x3 x4 x5 x6 x7)x1.
Apply H1 with λ x2 x3 . 0.
Let x2 of type ο be given.
Assume H2: ∀ x3 : ι → ι → ι . (∃ x4 : ι → ι → ι → ι → ι → ι . ∃ x5 x6 : ι → ι → ι . ∃ x7 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p 8b17e.. BinRelnHom struct_id struct_comp (λ x8 x9 . pack_r 0 (λ x10 x11 . False)) (λ x8 x9 . 0) x3 x4 x5 x6 x7)x2.
Apply H2 with λ x3 x4 . 0.
Let x3 of type ο be given.
Assume H3: ∀ x4 : ι → ι → ι → ι → ι → ι . (∃ x5 x6 : ι → ι → ι . ∃ x7 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p 8b17e.. BinRelnHom struct_id struct_comp (λ x8 x9 . pack_r 0 (λ x10 x11 . False)) (λ x8 x9 . 0) (λ x8 x9 . 0) x4 x5 x6 x7)x3.
Apply H3 with λ x4 x5 x6 x7 x8 . 0.
Let x4 of type ο be given.
Assume H4: ∀ x5 : ι → ι → ι . (∃ x6 : ι → ι → ι . ∃ x7 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p 8b17e.. BinRelnHom struct_id struct_comp (λ x8 x9 . pack_r 0 (λ x10 x11 . False)) (λ x8 x9 . 0) (λ x8 x9 . 0) (λ x8 x9 x10 x11 x12 . 0) x5 x6 x7)x4.
Apply H4 with λ x5 x6 . pack_r 0 (λ x7 x8 . False).
Let x5 of type ο be given.
Assume H5: ∀ x6 : ι → ι → ι . (∃ x7 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p 8b17e.. BinRelnHom struct_id struct_comp (λ x8 x9 . pack_r 0 (λ x10 x11 . False)) (λ x8 x9 . 0) (λ x8 x9 . 0) (λ x8 x9 x10 x11 x12 . 0) (λ x8 x9 . pack_r 0 (λ x10 x11 . False)) x6 x7)x5.
Apply H5 with λ x6 x7 . 0.
Let x6 of type ο be given.
Assume H6: ∀ x7 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p 8b17e.. BinRelnHom struct_id struct_comp (λ x8 x9 . pack_r 0 (λ x10 x11 . False)) (λ x8 x9 . 0) (λ x8 x9 . 0) (λ x8 x9 x10 x11 x12 . 0) (λ x8 x9 . pack_r 0 (λ x10 x11 . False)) (λ x8 x9 . 0) x7x6.
Apply H6 with λ x7 x8 x9 x10 . 0.
Apply andI with MetaCat_product_constr_p 8b17e.. BinRelnHom struct_id struct_comp (λ x7 x8 . pack_r 0 (λ x9 x10 . False)) (λ x7 x8 . 0) (λ x7 x8 . 0) (λ x7 x8 x9 x10 x11 . 0), ∀ x7 x8 . 8b17e.. x78b17e.. x8MetaCat_exp_p 8b17e.. BinRelnHom struct_id struct_comp (λ x9 x10 . pack_r 0 (λ x11 x12 . False)) (λ x9 x10 . 0) (λ x9 x10 . 0) (λ x9 x10 x11 x12 x13 . 0) x7 x8 (pack_r 0 (λ x9 x10 . False)) 0 (λ x9 x10 . 0) leaving 2 subgoals.
The subproof is completed by applying unknownprop_019eb3b7cc5b1d8119b16df5b31478f2fc6984523484e01d24620556dcd20e19.
Let x7 of type ι be given.
Let x8 of type ι be given.
Assume H7: 8b17e.. x7.
Assume H8: 8b17e.. x8.
Claim L9: ...
...
Apply and5I with 8b17e.. x7, 8b17e.. x8, 8b17e.. (pack_r 0 (λ x9 x10 . False)), BinRelnHom (pack_r 0 (λ x9 x10 . False)) ... 0, ... leaving 5 subgoals.
...
...
...
...
...