Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Assume H0: x0setexp real omega.
Let x1 of type ι be given.
Assume H1: x1setexp real omega.
Assume H2: ∀ x2 . x2omegaand (and (SNoLe (ap x0 x2) (ap x1 x2)) (SNoLe (ap x0 x2) (ap x0 (ordsucc x2)))) (SNoLe (ap x1 (ordsucc x2)) (ap x1 x2)).
Apply dneg with ∃ x2 . and (x2real) (∀ x3 . x3omegaand (SNoLe (ap x0 x3) x2) (SNoLe x2 (ap x1 x3))).
Assume H3: not (∃ x2 . and (x2real) (∀ x3 . x3omegaand (SNoLe (ap x0 x3) x2) (SNoLe x2 (ap x1 x3)))).
Claim L4: ...
...
Claim L5: ...
...
Claim L6: ...
...
Claim L7: ...
...
Apply SNoCutP_SNoCut_impred with {x2 ∈ SNoS_ omega|∃ x3 . and (x3omega) (SNoLt x2 (ap x0 x3))}, {x2 ∈ SNoS_ omega|∃ x3 . and (x3omega) (SNoLt (ap x1 x3) x2)}, False leaving 2 subgoals.
The subproof is completed by applying L7.
Assume H8: SNo (SNoCut {x2 ∈ SNoS_ omega|∃ x3 . and (x3omega) (SNoLt x2 (ap x0 x3))} {x2 ∈ SNoS_ omega|∃ x3 . and (x3omega) (SNoLt (ap x1 x3) x2)}).
Assume H9: SNoLev (SNoCut {x2 ∈ SNoS_ omega|∃ x3 . and (x3omega) (SNoLt x2 (ap x0 x3))} {x2 ∈ SNoS_ omega|∃ x3 . and (x3omega) (SNoLt (ap x1 x3) x2)})ordsucc (binunion (famunion {x2 ∈ SNoS_ omega|∃ x3 . and (x3omega) (SNoLt x2 (ap x0 x3))} (λ x2 . ordsucc (SNoLev x2))) (famunion {x2 ∈ SNoS_ omega|∃ x3 . and (x3omega) (SNoLt (ap x1 x3) x2)} (λ x2 . ordsucc (SNoLev x2)))).
Assume H10: ∀ x2 . x2{x3 ∈ SNoS_ omega|∃ x4 . and (x4omega) (SNoLt x3 (ap x0 x4))}SNoLt x2 (SNoCut {x3 ∈ SNoS_ omega|∃ x4 . and (x4omega) (SNoLt x3 (ap x0 x4))} {x3 ∈ SNoS_ omega|∃ x4 . and (x4omega) (SNoLt (ap x1 x4) x3)}).
Assume H11: ∀ x2 . ...SNoLt (SNoCut {x3 ∈ SNoS_ omega|∃ x4 . and (x4omega) (SNoLt x3 (ap x0 x4))} ...) ....
...