Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ιο be given.
Let x1 of type ιιιο be given.
Let x2 of type ιι be given.
Let x3 of type ιιιιιι be given.
Let x4 of type ιιι be given.
Let x5 of type ιιι be given.
Let x6 of type ιιι be given.
Let x7 of type ιιιιιι be given.
Assume H0: ∀ x8 x9 . x0 x8x0 x9∀ x10 : ο . (x0 (x4 x8 x9)x1 (x4 x8 x9) x8 (x5 x8 x9)x1 (x4 x8 x9) x9 (x6 x8 x9)(∀ x11 . x0 x11∀ x12 x13 . x1 x11 x8 x12x1 x11 x9 x13and (and (and (x1 x11 (x4 x8 x9) (x7 x8 x9 x11 x12 x13)) (x3 x11 (x4 x8 x9) x8 (x5 x8 x9) (x7 x8 x9 x11 x12 x13) = x12)) (x3 x11 (x4 x8 x9) x9 (x6 x8 x9) (x7 x8 x9 x11 x12 x13) = x13)) (∀ x14 . x1 x11 (x4 x8 x9) x14x3 x11 (x4 x8 x9) x8 (x5 x8 x9) x14 = x12x3 x11 (x4 x8 x9) x9 (x6 x8 x9) x14 = x13x14 = x7 x8 x9 x11 x12 x13))x10)x10.
Let x8 of type ι be given.
Let x9 of type ι be given.
Assume H1: x0 x8.
Assume H2: x0 x9.
Apply H0 with x8, x9, MetaCat_product_p x0 x1 x2 x3 x8 x9 (x4 x8 x9) (x5 x8 x9) (x6 x8 x9) (x7 x8 x9) leaving 3 subgoals.
The subproof is completed by applying H1.
The subproof is completed by applying H2.
Assume H3: x0 (x4 x8 x9).
Assume H4: x1 (x4 x8 x9) x8 (x5 x8 x9).
Assume H5: x1 (x4 x8 x9) x9 (x6 x8 x9).
Assume H6: ∀ x10 . ...∀ x11 x12 . ......and (and (and (x1 x10 (x4 x8 x9) (x7 x8 x9 x10 x11 x12)) (x3 x10 (x4 x8 x9) x8 (x5 x8 x9) (x7 x8 x9 x10 x11 x12) = x11)) (x3 x10 (x4 x8 x9) x9 (x6 x8 x9) (x7 x8 x9 x10 x11 x12) = x12)) (∀ x13 . ...x3 x10 (x4 x8 ...) ... ... ... = ...x3 x10 (x4 x8 x9) x9 (x6 x8 x9) x13 = x12x13 = x7 x8 x9 x10 x11 x12).
...