Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Assume H0: RealsStruct x0.
Apply explicit_Reals_E with field0 x0, field4 x0, RealsStruct_one x0, field1b x0, field2b x0, RealsStruct_leq x0, ∀ x1 . x1field0 x0∀ x2 . x2field0 x0RealsStruct_leq x0 (field4 x0) x1RealsStruct_leq x0 (field4 x0) x2RealsStruct_leq x0 (field4 x0) (field2b x0 x1 x2) leaving 2 subgoals.
Assume H1: explicit_Reals (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) (RealsStruct_leq x0).
Apply explicit_OrderedField_E with field0 x0, field4 x0, RealsStruct_one x0, field1b x0, field2b x0, RealsStruct_leq x0, (∀ x1 . ...∀ x2 . ......RealsStruct_leq ... ... ...∃ x3 . and (x3Sep (field0 x0) (natOfOrderedField_p (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) (RealsStruct_leq x0))) (RealsStruct_leq x0 x2 (field2b x0 x3 x1)))(∀ x1 . x1setexp (field0 x0) (Sep (field0 x0) (natOfOrderedField_p (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) (RealsStruct_leq x0)))∀ x2 . x2setexp (field0 x0) (Sep (field0 x0) (natOfOrderedField_p (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) (RealsStruct_leq x0)))(∀ x3 . x3Sep (field0 x0) (natOfOrderedField_p (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) (RealsStruct_leq x0))and (and (RealsStruct_leq x0 (ap x1 x3) (ap x2 x3)) (RealsStruct_leq x0 (ap x1 x3) (ap x1 (field1b x0 x3 (RealsStruct_one x0))))) (RealsStruct_leq x0 (ap x2 (field1b x0 x3 (RealsStruct_one x0))) (ap x2 x3)))∃ x3 . and (x3field0 x0) (∀ x4 . x4Sep (field0 x0) (natOfOrderedField_p (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) (RealsStruct_leq x0))and (RealsStruct_leq x0 (ap x1 x4) x3) (RealsStruct_leq x0 x3 (ap x2 x4))))∀ x1 . x1field0 x0∀ x2 . x2field0 x0RealsStruct_leq x0 (field4 x0) x1RealsStruct_leq x0 (field4 x0) x2RealsStruct_leq x0 (field4 x0) (field2b x0 x1 x2).
...
...