Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ιιι be given.
Let x2 of type ιιι be given.
Let x3 of type ιι be given.
Assume H0: 74f92.. (a255b.. x0 x1 x2 x3).
Apply H0 with λ x4 . x4 = a255b.. x0 x1 x2 x3∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0prim1 (x1 x5 x6) x0 leaving 2 subgoals.
Let x4 of type ι be given.
Let x5 of type ιιι be given.
Assume H1: ∀ x6 . prim1 x6 x4∀ x7 . prim1 x7 x4prim1 (x5 x6 x7) x4.
Let x6 of type ιιι be given.
Assume H2: ∀ x7 . prim1 x7 x4∀ x8 . prim1 x8 x4prim1 (x6 x7 x8) x4.
Let x7 of type ιι be given.
Assume H3: ∀ x8 . prim1 x8 x4prim1 (x7 x8) x4.
Assume H4: a255b.. x4 x5 x6 x7 = a255b.. x0 x1 x2 x3.
Apply unknownprop_9750189e11d72229ff0ec75ec99d563f04f3d86fa8a7154b24a8b01ed3e56846 with x4, x0, x5, x1, x6, x2, x7, x3, ∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0prim1 (x1 x8 x9) x0 leaving 2 subgoals.
The subproof is completed by applying H4.
Assume H5: and (and (x4 = x0) (∀ x8 . prim1 x8 x4∀ x9 . prim1 x9 x4x5 x8 x9 = x1 x8 x9)) (∀ x8 . prim1 x8 x4∀ x9 . prim1 x9 x4x6 x8 x9 = x2 x8 x9).
Apply H5 with (∀ x8 . prim1 x8 x4x7 x8 = x3 x8)∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0prim1 (x1 x8 x9) x0.
Assume H6: and (x4 = x0) (∀ x8 . prim1 x8 x4∀ x9 . prim1 x9 x4x5 x8 x9 = x1 x8 x9).
Apply H6 with (∀ x8 . prim1 x8 x4∀ x9 . prim1 x9 x4x6 x8 x9 = x2 x8 x9)(∀ x8 . prim1 x8 x4x7 x8 = x3 x8)∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0prim1 (x1 x8 x9) x0.
Assume H7: x4 = x0.
Assume H8: ∀ x8 . prim1 x8 x4∀ x9 . prim1 x9 x4x5 x8 x9 = x1 x8 x9.
Assume H9: ∀ x8 . prim1 x8 x4∀ x9 . prim1 x9 x4x6 x8 x9 = x2 x8 x9.
Assume H10: ∀ x8 . prim1 x8 x4x7 x8 = x3 x8.
Apply H7 with λ x8 x9 . ∀ x10 . ...∀ x11 . ...prim1 ... ....
...
...