Let x0 of type ι → ι → ο be given.
Let x1 of type ι → ι be given.
Let x2 of type ι → ι → ο be given.
Let x3 of type ι → ο be given.
Let x4 of type ι → ο be given.
Let x5 of type ι → ι be given.
Let x6 of type ι → ι be given.
Let x7 of type ι → ι be given.
Let x8 of type ι → ι → ο be given.
Let x9 of type ι → ι → ο be given.
Let x10 of type ι → ι → ι be given.
Let x11 of type ι → ο be given.
Let x12 of type ι → ο be given.
Let x13 of type ι be given.
Let x14 of type ι → ι → ι → ο be given.
Let x15 of type ι → ι → ο be given.
Let x16 of type ι be given.
Let x17 of type ι be given.
Let x18 of type ι be given.
Let x19 of type ι be given.
Let x20 of type ι be given.
Let x21 of type ι be given.
Let x22 of type ι be given.
Let x23 of type ι → ι be given.
Let x24 of type ι → ο be given.
Let x25 of type ι → ι → ι be given.
Let x26 of type ι → ο be given.
Let x27 of type ι → ι → ι be given.
Let x28 of type ι → ι → ο be given.
Let x29 of type ι → ι → ο be given.
Let x30 of type ι be given.
Let x31 of type ι be given.
Let x32 of type ι → ο be given.
Let x33 of type ι → ι be given.
Let x34 of type ι → ο be given.
Let x35 of type ι be given.
Let x36 of type ι → ι → ο be given.
Let x37 of type ι → ι be given.
Let x38 of type ι → ι → ο be given.
Let x39 of type ι → ο be given.
Let x40 of type ι be given.
Let x41 of type ι → ι → ι be given.
Let x42 of type ι → ι be given.
Let x43 of type ι → ι → ι be given.
Let x44 of type ι → ο be given.
Let x45 of type ι → ο be given.
Assume H5:
∀ x46 x47 . x45 x47 ⟶ (x47 = x46 ⟶ False) ⟶ x45 x46 ⟶ False.
Assume H6:
∀ x46 x47 . x0 x46 x47 ⟶ x45 x47 ⟶ False.
Assume H7:
∀ x46 x47 x48 x49 . x44 x49 ⟶ x44 x46 ⟶ x0 (x43 x48 x47) (x42 x46) ⟶ (x0 (x43 x48 x47) (x42 (x41 x49 x46)) ⟶ False) ⟶ False.
Assume H8:
∀ x46 x47 x48 x49 . x44 x49 ⟶ x44 x46 ⟶ x0 (x43 x48 x47) (x42 x49) ⟶ (x0 (x43 x48 x47) (x42 (x41 x49 x46)) ⟶ False) ⟶ False.
Assume H9:
∀ x46 . x45 x46 ⟶ (x46 = x40 ⟶ False) ⟶ False.
Assume H10:
∀ x46 x47 x48 . x0 x46 x47 ⟶ x2 x47 (x1 x48) ⟶ x45 x48 ⟶ False.
Assume H11:
∀ x46 x47 x48 x49 . x44 x49 ⟶ x44 x46 ⟶ x0 (x43 x48 x47) (x42 (x41 x49 x46)) ⟶ x0 x48 (x37 x46) ⟶ x0 x47 (x37 x46) ⟶ x38 x49 x46 ⟶ x39 x46 ⟶ (x0 (x43 x48 x47) (x42 x46) ⟶ False) ⟶ False.
Assume H12:
∀ x46 x47 x48 . x0 x47 x48 ⟶ x2 x48 (x1 x46) ⟶ (x2 x47 x46 ⟶ False) ⟶ False.
Assume H13:
∀ x46 x47 . x36 x47 x46 ⟶ (x2 x47 (x1 x46) ⟶ False) ⟶ False.
Assume H14:
∀ x46 x47 . x2 x47 (x1 x46) ⟶ (x36 x47 x46 ⟶ False) ⟶ False.
Assume H15:
∀ x46 x47 . x2 x46 x47 ⟶ (x45 x47 ⟶ False) ⟶ (x0 x46 x47 ⟶ False) ⟶ False.
Assume H16:
∀ x46 x47 . x0 x47 x46 ⟶ (x2 x47 x46 ⟶ False) ⟶ False.
Assume H17:
x45 x35 ⟶ False.
Assume H18:
∀ x46 . (x36 x46 x46 ⟶ False) ⟶ False.
Assume H19:
∀ x46 . (x34 x46 ⟶ False) ⟶ x32 x46 ⟶ x45 (x33 x46) ⟶ False.
Assume H20:
∀ x46 . (x34 x46 ⟶ False) ⟶ x32 x46 ⟶ (x2 (x33 x46) (x1 (x37 x46)) ⟶ False) ⟶ False.
Assume H21:
x45 x31 ⟶ False.
Assume H22:
∀ x46 . (x3 x46 ⟶ False) ⟶ x32 x46 ⟶ x4 (x5 x46) ⟶ False.
Assume H23:
∀ x46 . ... ⟶ ... ⟶ (x2 (x5 x46) (x1 ...) ⟶ False) ⟶ False.