Let x0 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x1 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x2 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x3 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x4 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x5 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x6 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x7 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x8 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x9 of type ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι) be given.
Let x10 of type (((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι)) → (((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι)) → ι be given.
Assume H20:
∀ x11 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . ∀ x12 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . ap (x10 x11 x12) 0 = ChurchNums_3x8_to_u24 x11 x12.
Assume H25:
∀ x11 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . ∀ x12 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . ChurchNum_3ary_proj_p x11 ⟶ ChurchNum_8ary_proj_p x12 ⟶ ∀ x13 . x13 ∈ u5 ⟶ ∀ x14 . x14 ∈ u5 ⟶ ap (x10 x11 x12) x13 = ap (x10 x11 x12) x14 ⟶ x13 = x14.