Search for blocks/addresses/...

Proofgold Proof

pf
Apply df_bigo__df_blen__df_dig__df_setrecs__df_pg__df_gte__df_gt__df_sinh__df_cosh__df_tanh__df_sec__df_csc__df_cot__df_logbALT__df_reflexive__df_irreflexive__df_alsi__df_alsc with wceq cbigo (cmpt (λ x0 . co cr cr cpm) (λ x0 . crab (λ x1 . wrex (λ x2 . wrex (λ x3 . wral (λ x4 . wbr (cfv (cv x4) (cv x1)) (co (cv x3) (cfv (cv x4) (cv x0)) cmul) cle) (λ x4 . cin (cdm (cv x1)) (co (cv x2) cpnf cico))) (λ x3 . cr)) (λ x2 . cr)) (λ x1 . co cr cr cpm))).
Assume H0: wceq cbigo (cmpt (λ x0 . co cr cr cpm) (λ x0 . crab (λ x1 . wrex (λ x2 . wrex (λ x3 . wral (λ x4 . wbr (cfv (cv x4) (cv x1)) (co (cv x3) (cfv (cv x4) (cv x0)) cmul) cle) (λ x4 . cin (cdm (cv x1)) (co (cv x2) cpnf cico))) (λ x3 . cr)) (λ x2 . cr)) (λ x1 . co cr cr cpm))).
Assume H1: wceq cblen (cmpt (λ x0 . cvv) (λ x0 . cif (wceq (cv x0) cc0) c1 (co (cfv (co c2 (cfv (cv x0) cabs) clogb) cfl) c1 caddc))).
Assume H2: wceq cdig (cmpt (λ x0 . cn) (λ x0 . cmpt2 (λ x1 x2 . cz) (λ x1 x2 . co cc0 cpnf cico) (λ x1 x2 . co (cfv (co (co (cv x0) (cneg (cv x1)) cexp) (cv x2) cmul) cfl) (cv x0) cmo))).
Assume H3: ∀ x0 : ι → ο . wceq (csetrecs x0) (cuni (cab (λ x1 . ∀ x2 . (∀ x3 . wss (cv x3) (cv x1)wss (cv x3) (cv x2)wss (cfv (cv x3) x0) (cv x2))wss (cv x1) (cv x2)))).
Assume H4: wceq cpg (csetrecs (cmpt (λ x0 . cvv) (λ x0 . cxp (cpw (cv x0)) (cpw (cv x0))))).
Assume H5: wceq cge_real (ccnv cle).
Assume H6: wceq cgt (ccnv clt).
Assume H7: wceq csinh (cmpt (λ x0 . cc) (λ x0 . co (cfv (co ci (cv x0) cmul) csin) ci cdiv)).
Assume H8: wceq ccosh (cmpt (λ x0 . cc) (λ x0 . cfv (co ci (cv x0) cmul) ccos)).
Assume H9: wceq ctanh (cmpt ... ...).
...