Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι be given.
Assume H0: SNoCutP x0 x1.
Assume H1: SNoCutP x2 x3.
Claim L2: ...
...
Claim L3: ...
...
Claim L4: ...
...
Apply H0 with SNoCutP (binunion {add_SNo x4 (SNoCut x2 x3)|x4 ∈ x0} {add_SNo (SNoCut x0 x1) x4|x4 ∈ x2}) (binunion {add_SNo x4 (SNoCut x2 x3)|x4 ∈ x1} {add_SNo (SNoCut x0 x1) x4|x4 ∈ x3}).
Assume H5: and (∀ x4 . x4x0SNo x4) (∀ x4 . x4x1SNo x4).
Apply H5 with (∀ x4 . x4x0∀ x5 . x5x1SNoLt x4 x5)SNoCutP (binunion {add_SNo x4 (SNoCut x2 x3)|x4 ∈ x0} {add_SNo (SNoCut x0 x1) x4|x4 ∈ x2}) (binunion {add_SNo x4 (SNoCut x2 x3)|x4 ∈ x1} {add_SNo (SNoCut x0 x1) x4|x4 ∈ x3}).
Assume H6: ∀ x4 . x4x0SNo x4.
Assume H7: ∀ x4 . x4x1SNo x4.
Assume H8: ∀ x4 . x4x0∀ x5 . x5x1SNoLt x4 x5.
Apply H1 with SNoCutP (binunion {add_SNo x4 (SNoCut x2 x3)|x4 ∈ x0} {add_SNo (SNoCut x0 x1) x4|x4 ∈ x2}) (binunion {add_SNo x4 (SNoCut x2 x3)|x4 ∈ x1} {add_SNo (SNoCut x0 x1) x4|x4 ∈ x3}).
Assume H9: and (∀ x4 . x4x2SNo x4) (∀ x4 . x4x3SNo x4).
Apply H9 with (∀ x4 . x4x2∀ x5 . x5x3SNoLt x4 x5)SNoCutP (binunion {add_SNo x4 (SNoCut x2 x3)|x4 ∈ x0} {add_SNo (SNoCut x0 x1) x4|x4 ∈ x2}) (binunion {add_SNo x4 (SNoCut x2 x3)|x4 ∈ x1} {add_SNo (SNoCut x0 x1) x4|x4 ∈ x3}).
Assume H10: ∀ x4 . x4x2SNo x4.
Assume H11: ∀ x4 . x4x3SNo x4.
Assume H12: ∀ x4 . x4x2∀ x5 . x5x3SNoLt x4 x5.
Apply and3I with ∀ x4 . x4binunion {add_SNo x5 (SNoCut x2 x3)|x5 ∈ x0} {add_SNo (SNoCut x0 x1) x5|x5 ∈ x2}SNo x4, ∀ x4 . x4binunion {add_SNo x5 (SNoCut x2 x3)|x5 ∈ x1} {add_SNo (SNoCut x0 x1) ...|x5 ∈ x3}SNo x4, ... leaving 3 subgoals.
...
...
...