Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ιι be given.
Assume H0: ∀ x1 . 1eb0a.. x1and (SNo (x0 x1)) (∃ x2 . and (SNo x2) (∃ x3 . and (SNo x3) (∃ x4 . and (SNo x4) (∃ x5 . and (SNo x5) (∃ x6 . and (SNo x6) (∃ x7 . and (SNo x7) (∃ x8 . and (SNo x8) (x1 = bbc71.. (x0 x1) x2 x3 x4 x5 x6 x7 x8)))))))).
Assume H1: ∀ x1 . 1eb0a.. x1SNo (x0 x1).
Let x1 of type ιι be given.
Assume H2: ∀ x2 . 1eb0a.. x2and (SNo (x1 x2)) (∃ x3 . and (SNo x3) (∃ x4 . and (SNo x4) (∃ x5 . and (SNo x5) (∃ x6 . and (SNo x6) (∃ x7 . and (SNo x7) (∃ x8 . and (SNo x8) (x2 = bbc71.. (x0 x2) (x1 x2) x3 x4 x5 x6 x7 x8))))))).
Let x2 of type ι be given.
Assume H3: 1eb0a.. x2.
Apply H2 with x2, and (SNo (50208.. x0 x1 x2)) (∃ x3 . and (SNo x3) (∃ x4 . and (SNo x4) (∃ x5 . and (SNo x5) (∃ x6 . and (SNo x6) (∃ x7 . and (SNo x7) (x2 = bbc71.. (x0 x2) (x1 x2) (50208.. x0 x1 x2) x3 x4 x5 x6 x7)))))) leaving 2 subgoals.
The subproof is completed by applying H3.
Assume H4: SNo (x1 x2).
Assume H5: ∃ x3 . and (SNo x3) (∃ x4 . and (SNo x4) (∃ x5 . and (SNo x5) (∃ x6 . and (SNo x6) (∃ x7 . and (SNo x7) (∃ x8 . and (SNo x8) (x2 = bbc71.. (x0 x2) (x1 x2) x3 x4 x5 x6 x7 x8)))))).
Apply Eps_i_ex with λ x3 . and (SNo x3) (∃ x4 . and (SNo x4) (∃ x5 . and (SNo x5) (∃ x6 . and (SNo x6) (∃ x7 . and (SNo x7) (∃ x8 . and (SNo x8) (x2 = bbc71.. (x0 x2) (x1 x2) x3 x4 x5 x6 x7 x8)))))).
The subproof is completed by applying H5.