Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Assume H0: RealsStruct x0.
Apply explicit_Nats_E with RealsStruct_N x0, field4 x0, λ x1 . field1b x0 x1 (RealsStruct_one x0), ∀ x1 . x1omegaRealsStruct_omega_embedding x0 x1RealsStruct_N x0 leaving 2 subgoals.
Assume H1: explicit_Nats (RealsStruct_N x0) (field4 x0) (λ x1 . field1b x0 x1 (RealsStruct_one x0)).
Assume H2: field4 x0RealsStruct_N x0.
Assume H3: ∀ x1 . x1RealsStruct_N x0(λ x2 . field1b x0 x2 (RealsStruct_one x0)) x1RealsStruct_N x0.
Assume H4: ∀ x1 . x1RealsStruct_N x0(λ x2 . field1b x0 x2 (RealsStruct_one x0)) x1 = field4 x0∀ x2 : ο . x2.
Assume H5: ∀ x1 . x1RealsStruct_N x0∀ x2 . x2RealsStruct_N x0(λ x3 . field1b x0 x3 (RealsStruct_one x0)) x1 = (λ x3 . field1b x0 x3 (RealsStruct_one x0)) x2x1 = x2.
Assume H6: ∀ x1 : ι → ο . x1 (field4 x0)(∀ x2 . x1 x2x1 ((λ x3 . field1b x0 x3 (RealsStruct_one x0)) x2))∀ x2 . x2RealsStruct_N x0x1 x2.
Claim L7: ∀ x1 . nat_p x1RealsStruct_omega_embedding x0 x1RealsStruct_N x0
Apply nat_ind with λ x1 . RealsStruct_omega_embedding x0 x1RealsStruct_N x0 leaving 2 subgoals.
Apply nat_primrec_0 with field4 x0, λ x1 x2 . field1b x0 x2 (RealsStruct_one x0), λ x1 x2 . x2RealsStruct_N x0.
The subproof is completed by applying H2.
Let x1 of type ι be given.
Assume H7: nat_p x1.
Apply nat_primrec_S with field4 x0, λ x2 x3 . field1b x0 x3 (RealsStruct_one x0), x1, λ x2 x3 . x3RealsStruct_N x0 leaving 2 subgoals.
The subproof is completed by applying H7.
Apply H3 with RealsStruct_omega_embedding x0 x1.
The subproof is completed by applying H8.
Let x1 of type ι be given.
Assume H8: x1omega.
Apply L7 with x1.
Apply omega_nat_p with x1.
The subproof is completed by applying H8.
Apply RealsStruct_natOfOrderedField with x0.
The subproof is completed by applying H0.