Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ιιι be given.
Let x2 of type ιιι be given.
Let x3 of type ιιι be given.
Let x4 of type ι be given.
Let x5 of type ιιι be given.
Let x6 of type ιιιι be given.
Let x7 of type ιιι be given.
Let x8 of type ιιιι be given.
Let x9 of type ιιιι be given.
Let x10 of type ιιι be given.
Let x11 of type ιιι be given.
Let x12 of type ιιι be given.
Let x13 of type ιιι be given.
Assume H0: Loop_with_defs_cex2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13.
Let x14 of type ο be given.
Assume H1: ∀ x15 . In x15 x0∀ x16 . In x16 x0∀ x17 . In x17 x0∀ x18 . In x18 x0∀ x19 . In x19 x0Loop_with_defs x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13not (x6 x19 (x1 (x3 x4 x15) (x9 x16 x17 x15)) x18 = x4)x14.
Apply unknownprop_f2e25d0f67eab41408976ff453a45450d0bfdcbdaae0d742e8330292d38ac21a with x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14 leaving 2 subgoals.
The subproof is completed by applying H0.
Assume H2: Loop_with_defs x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13.
Assume H3: ∃ x15 . and (In x15 x0) (∃ x16 . and (In x16 x0) (∃ x17 . and (In x17 x0) (∃ x18 . and (In x18 x0) (∃ x19 . and (In x19 x0) (not (x6 x19 (x1 (x3 x4 x15) (x9 x16 x17 x15)) x18 = x4)))))).
Apply H3 with x14.
Let x15 of type ι be given.
Apply unknownprop_670c1bb10dc1952c71f5fdb407208a9646b2ed4c350ab9dc752cc19ec9535b95 with In x15 x0, ∃ x16 . and (In x16 x0) (∃ x17 . and (In x17 x0) (∃ x18 . and (In x18 x0) (∃ x19 . and (In x19 x0) (not (x6 x19 (x1 (x3 x4 x15) (x9 x16 x17 x15)) x18 = x4))))), x14.
Assume H4: In x15 x0.
Assume H5: ∃ x16 . and (In x16 x0) (∃ x17 . and (In x17 x0) (∃ x18 . and (In x18 x0) (∃ x19 . and (In x19 x0) (not (x6 x19 (x1 (x3 x4 x15) (x9 x16 x17 x15)) x18 = x4))))).
Apply H5 with x14.
Let x16 of type ι be given.
Apply unknownprop_670c1bb10dc1952c71f5fdb407208a9646b2ed4c350ab9dc752cc19ec9535b95 with In x16 x0, ∃ x17 . and (In x17 x0) (∃ x18 . and (In x18 x0) (∃ x19 . and (In x19 x0) (not (x6 x19 (x1 (x3 x4 x15) (x9 x16 x17 x15)) x18 = x4)))), x14.
Assume H6: In x16 x0.
Assume H7: ∃ x17 . and ... ....
...