Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ιιι be given.
Let x4 of type ιιι be given.
Let x5 of type ιιο be given.
Let x6 of type ιιι be given.
Let x7 of type ι be given.
Assume H0: ∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0x6 x8 x9 = x6 x10 x11and (x8 = x10) (x9 = x11).
Assume H1: explicit_Reals x0 x1 x2 x3 x4 x5.
Assume H2: ∀ x8 . x8x0∀ x9 . x9x0x3 x8 x9 = x3 x9 x8.
Assume H3: x1x0.
Assume H4: ∀ x8 . x8x0x3 x1 x8 = x8.
Assume H5: ∀ x8 . x8x0∀ x9 . x9x0x4 x8 x9x0.
Assume H6: ∀ x8 . x8x0∀ x9 . x9x0(λ x10 . prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x10 = x6 x11 x12)))) (x6 x8 x9) = x8.
Assume H7: ∀ x8 . x8x0x6 x8 x1{x9 ∈ x7|(λ x10 . x6 ((λ x11 . prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x11 = x6 x12 x13)))) x10) x1) x9 = x9}.
Assume H8: ∀ x8 . x8x7(λ x9 . prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x9 = x6 x10 x11)))) x8x0.
Assume H9: ∀ x8 . ...∀ x9 . ...∀ x10 . ...∀ x11 . ...(λ x12 x13 . x6 (x3 ((λ x14 . prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x14 = x6 x15 x16)))) x12) ((λ x14 . prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x14 = x6 x15 x16)))) x13)) (x3 ((λ x14 . prim0 (λ x15 . and (x15x0) (x14 = x6 ((λ x16 . prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x16 = x6 x17 x18)))) x14) x15))) x12) ((λ x14 . prim0 (λ x15 . and (x15x0) (x14 = x6 ((λ x16 . prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x16 = x6 x17 x18)))) x14) x15))) ...))) ... ... = ....
...