Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Assume H0: nat_p x1.
Apply unknownprop_cb22f23c255b11e2fef1f0187745d1c6297e541a75b408830b470617abac132a with x0, ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (ordsucc x1))))))), λ x2 x3 . x3 = ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (add_nat x0 x1)))))))))))))))) leaving 2 subgoals.
Apply unknownprop_1a52e19bf4045e8e446a298da7dba8c076ee67253cdcf7b15e893847906b7879 with x1.
The subproof is completed by applying H0.
Apply unknownprop_cb22f23c255b11e2fef1f0187745d1c6297e541a75b408830b470617abac132a with x0, x1, λ x2 x3 . ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (ordsucc x3))))))) = ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (ordsucc (add_nat x0 x1)))))))))))))))) leaving 2 subgoals.
The subproof is completed by applying H0.
Let x2 of type ιιο be given.
The subproof is completed by applying H1.