Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type (ιο) → ο be given.
Let x2 of type (ιο) → ο be given.
Let x3 of type ιιι be given.
Let x4 of type ιιι be given.
Let x5 of type ι be given.
Let x6 of type ι be given.
Assume H0: ∀ x7 : ι → ο . (∀ x8 . x7 x8x8x0)iff (x1 x7) (x2 x7).
Assume H1: ∀ x7 . x7x0∀ x8 . x8x0x3 x7 x8 = x4 x7 x8.
Claim L2: encode_c x0 x1 = encode_c x0 x2
Apply encode_c_ext with x0, x1, x2.
The subproof is completed by applying H0.
Apply L2 with λ x7 x8 . lam 5 (λ x9 . If_i (x9 = 0) x0 (If_i (x9 = 1) (encode_c x0 x1) (If_i (x9 = 2) (encode_b x0 x3) (If_i (x9 = 3) x5 x6)))) = lam 5 (λ x9 . If_i (x9 = 0) x0 (If_i (x9 = 1) x7 (If_i (x9 = 2) (encode_b x0 x4) (If_i (x9 = 3) x5 x6)))).
Claim L3: encode_b x0 x3 = encode_b x0 x4
Apply encode_b_ext with x0, x3, x4.
The subproof is completed by applying H1.
Apply L3 with λ x7 x8 . lam 5 (λ x9 . If_i (x9 = 0) x0 (If_i (x9 = 1) (encode_c x0 x1) (If_i (x9 = 2) (encode_b x0 x3) (If_i (x9 = 3) x5 x6)))) = lam 5 (λ x9 . If_i (x9 = 0) x0 (If_i (x9 = 1) (encode_c x0 x1) (If_i (x9 = 2) x7 (If_i (x9 = 3) x5 x6)))).
Let x7 of type ιιο be given.
Assume H4: x7 (lam 5 (λ x8 . If_i (x8 = 0) x0 (If_i (x8 = 1) (encode_c x0 x1) (If_i (x8 = 2) (encode_b x0 x3) (If_i (x8 = 3) x5 x6))))) (lam 5 (λ x8 . If_i (x8 = 0) x0 (If_i (x8 = 1) (encode_c x0 x1) (If_i (x8 = 2) (encode_b x0 x3) (If_i (x8 = 3) x5 x6))))).
The subproof is completed by applying H4.