Let x0 of type ι be given.
Apply H0 with
dac20.. x0.
Apply H1 with
λ x1 . c3510.. x1 (λ x2 . λ x3 x4 : ι → ι → ι . λ x5 x6 . explicit_Field x2 x5 x6 x3 x4) ⟶ c3510.. x1 (λ x2 . λ x3 x4 : ι → ι → ι . λ x5 x6 . explicit_CRing_with_id x2 x5 x6 x3 x4).
Let x1 of type ι be given.
Let x2 of type ι → ι → ι be given.
Assume H2:
∀ x3 . prim1 x3 x1 ⟶ ∀ x4 . prim1 x4 x1 ⟶ prim1 (x2 x3 x4) x1.
Let x3 of type ι → ι → ι be given.
Assume H3:
∀ x4 . prim1 x4 x1 ⟶ ∀ x5 . prim1 x5 x1 ⟶ prim1 (x3 x4 x5) x1.
Let x4 of type ι be given.
Let x5 of type ι be given.
Apply unknownprop_90c83eb2afcf0bd3e1333be6478589d0a91068596d7e83371bc99af5bfa18d0e with
x1,
x2,
x3,
x4,
x5,
λ x6 x7 : ο . x7 ⟶ c3510.. (c77b5.. x1 x2 x3 x4 x5) (λ x8 . λ x9 x10 : ι → ι → ι . λ x11 x12 . explicit_CRing_with_id x8 x11 x12 x9 x10).
Apply unknownprop_012ca8caa2f09e68def42ddb439cd4e9c3f98b6e2edd38830763ab994ab639cc with
x1,
x2,
x3,
x4,
x5,
λ x6 x7 : ο . explicit_Field x1 x4 x5 x2 x3 ⟶ x7.
The subproof is completed by applying unknownprop_edda276b762747645f609cbf968535ac9a9bad70fb2d34d6e5e3760af3e3c28b with x1, x4, x5, x2, x3.
Apply andI with
3f0d0.. x0,
c3510.. x0 (λ x1 . λ x2 x3 : ι → ι → ι . λ x4 x5 . explicit_CRing_with_id x1 x4 x5 x2 x3) leaving 2 subgoals.
The subproof is completed by applying H1.
Apply L2.
The subproof is completed by applying H3.