Let x0 of type ι → ι → ο be given.
Let x1 of type ι → ι be given.
Let x2 of type ι → ι → ο be given.
Let x3 of type ι → ο be given.
Let x4 of type ι → ο be given.
Let x5 of type ι → ι be given.
Let x6 of type ι → ι be given.
Let x7 of type ι → ι → ι be given.
Let x8 of type ι → ι be given.
Let x9 of type ι → ι be given.
Let x10 of type ι → ο be given.
Let x11 of type ι → ι be given.
Let x12 of type ι → ι → ι be given.
Let x13 of type ι → ι → ο be given.
Let x14 of type ι → ι be given.
Let x15 of type ι → ο be given.
Let x16 of type ι → ο be given.
Let x17 of type ι be given.
Let x18 of type ι → ο be given.
Let x19 of type ι → ι be given.
Let x20 of type ι → ι → ι be given.
Let x21 of type ι → ι be given.
Let x22 of type ι → ι be given.
Let x23 of type ι → ι → ο be given.
Let x24 of type ι be given.
Let x25 of type ι → ι be given.
Let x26 of type ι → ι → ι be given.
Let x27 of type ι be given.
Let x28 of type ι → ο be given.
Let x29 of type ι → ο be given.
Let x30 of type ι be given.
Let x31 of type ι → ι be given.
Let x32 of type ι → ι → ι be given.
Let x33 of type ι → ι → ι → ο be given.
Let x34 of type ι → ι → ι be given.
Let x35 of type ι be given.
Let x36 of type ι → ι be given.
Let x37 of type ι → ο be given.
Let x38 of type ι be given.
Let x39 of type ι be given.
Let x40 of type ι be given.
Let x41 of type ι be given.
Let x42 of type ι be given.
Let x43 of type ι → ο be given.
Let x44 of type ι → ι → ι be given.
Let x45 of type ι be given.
Let x46 of type ι be given.
Let x47 of type ι → ο be given.
Let x48 of type ι → ο be given.
Let x49 of type ι → ι be given.
Let x50 of type ι → ι → ο be given.
Let x51 of type ι be given.
Let x52 of type ι → ι be given.
Let x53 of type ι be given.
Let x54 of type ι → ι → ι be given.
Let x55 of type ι be given.
Let x56 of type ι → ο be given.
Let x57 of type ι → ι → ι → ι → ι → ι → ι be given.
Let x58 of type ι → ι → ο be given.
Let x59 of type ι → ι → ι be given.
Let x60 of type ι → ι → ι → ι → ο be given.
Let x61 of type ι → ι → ι be given.
Let x62 of type ι → ι → ο be given.
Let x63 of type ι be given.
Let x64 of type ι → ο be given.
Assume H5:
∀ x65 x66 . x64 x66 ⟶ (x66 = x65 ⟶ False) ⟶ x64 x65 ⟶ False.
Assume H6:
∀ x65 x66 . x0 x65 x66 ⟶ x64 x66 ⟶ False.
Assume H7:
∀ x65 . x64 x65 ⟶ (x65 = x63 ⟶ False) ⟶ False.
Assume H8:
∀ x65 x66 x67 . x0 x65 x66 ⟶ x2 x66 (x1 x67) ⟶ x64 x67 ⟶ False.
Assume H9:
∀ x65 x66 x67 . x0 x66 x67 ⟶ x2 x67 (x1 x65) ⟶ (x2 x66 x65 ⟶ False) ⟶ False.
Assume H10:
∀ x65 x66 . x3 x66 ⟶ x10 x66 ⟶ x3 x65 ⟶ x10 x65 ⟶ x4 x66 ⟶ x8 x66 = x9 x65 ⟶ x7 x66 x65 = x6 (x9 x66) ⟶ (x65 = x5 x66 ⟶ False) ⟶ False.
Assume H11:
∀ x65 x66 . x62 x66 x65 ⟶ (x2 x66 (x1 x65) ⟶ False) ⟶ False.
Assume H12:
∀ x65 x66 . x2 x66 (x1 x65) ⟶ (x62 x66 x65 ⟶ False) ⟶ False.
Assume H13:
∀ x65 x66 . x2 x65 x66 ⟶ (x64 x66 ⟶ False) ⟶ (x0 x65 x66 ⟶ False) ⟶ False.
Assume H14:
∀ x65 x66 . x0 x66 x65 ⟶ (x2 x66 x65 ⟶ False) ⟶ False.
Assume H15:
∀ x65 x66 x67 x68 . x2 x68 (x1 (x61 x67 x66)) ⟶ x2 x65 (x1 (x61 x67 x66)) ⟶ x60 x67 x66 x68 x65 ⟶ (x60 x67 x66 x65 x68 ⟶ False) ⟶ False.
Assume H16:
∀ x65 x66 x67 x68 . x2 x68 (x1 (x61 x67 x66)) ⟶ x2 x65 (x1 (x61 x67 x66)) ⟶ (x60 x67 x66 x68 x68 ⟶ False) ⟶ False.
Assume H17:
∀ x65 . (x62 x65 x65 ⟶ False) ⟶ False.
Assume H18:
∀ x65 x66 x67 x68 . x2 x68 (x1 (x61 x67 x66)) ⟶ x2 x65 (x1 (x61 x67 x66)) ⟶ x68 = x65 ⟶ (x60 x67 x66 x68 x65 ⟶ False) ⟶ False.
Assume H19:
∀ x65 x66 x67 x68 . x2 x68 (x1 (x61 ... ...)) ⟶ x2 x65 (x1 (x61 x67 x66)) ⟶ x60 x67 x66 x68 x65 ⟶ (x68 = x65 ⟶ False) ⟶ False.