Let x0 of type ι be given.
Let x1 of type ι → ι → ι be given.
Let x2 of type ι → ι → ι be given.
Let x3 of type ι → ι → ι be given.
Apply H0 with
λ x4 . x4 = 7c612.. x0 x1 x2 x3 ⟶ ∀ x5 . prim1 x5 x0 ⟶ ∀ x6 . prim1 x6 x0 ⟶ prim1 (x1 x5 x6) x0 leaving 2 subgoals.
Let x4 of type ι be given.
Let x5 of type ι → ι → ι be given.
Assume H1:
∀ x6 . prim1 x6 x4 ⟶ ∀ x7 . prim1 x7 x4 ⟶ prim1 (x5 x6 x7) x4.
Let x6 of type ι → ι → ι be given.
Assume H2:
∀ x7 . prim1 x7 x4 ⟶ ∀ x8 . prim1 x8 x4 ⟶ prim1 (x6 x7 x8) x4.
Let x7 of type ι → ι → ι be given.
Assume H3:
∀ x8 . prim1 x8 x4 ⟶ ∀ x9 . prim1 x9 x4 ⟶ prim1 (x7 x8 x9) x4.
Apply unknownprop_4854efa88fdb098f2290c8c2d0691c9781d9d179d3e2125b050803a84503aa08 with
x4,
x0,
x5,
x1,
x6,
x2,
x7,
x3,
∀ x8 . prim1 x8 x0 ⟶ ∀ x9 . prim1 x9 x0 ⟶ prim1 (x1 x8 x9) x0 leaving 2 subgoals.
The subproof is completed by applying H4.
Assume H5:
and (and (x4 = x0) (∀ x8 . prim1 x8 x4 ⟶ ∀ x9 . prim1 x9 x4 ⟶ x5 x8 x9 = x1 x8 x9)) (∀ x8 . prim1 x8 x4 ⟶ ∀ x9 . prim1 x9 x4 ⟶ x6 x8 x9 = x2 x8 x9).
Apply H5 with
(∀ x8 . prim1 x8 x4 ⟶ ∀ x9 . prim1 x9 x4 ⟶ x7 x8 x9 = x3 x8 x9) ⟶ ∀ x8 . prim1 x8 x0 ⟶ ∀ x9 . prim1 x9 x0 ⟶ prim1 (x1 x8 x9) x0.
Assume H6:
and (x4 = x0) (∀ x8 . prim1 x8 x4 ⟶ ∀ x9 . prim1 x9 x4 ⟶ x5 x8 x9 = x1 x8 x9).
Apply H6 with
(∀ x8 . prim1 x8 x4 ⟶ ∀ x9 . prim1 x9 x4 ⟶ x6 x8 x9 = x2 x8 x9) ⟶ (∀ x8 . prim1 x8 x4 ⟶ ∀ x9 . prim1 x9 x4 ⟶ x7 x8 x9 = x3 x8 x9) ⟶ ∀ x8 . prim1 x8 x0 ⟶ ∀ x9 . prim1 x9 x0 ⟶ prim1 (x1 x8 x9) x0.
Assume H7: x4 = x0.
Assume H8:
∀ x8 . prim1 x8 x4 ⟶ ∀ x9 . prim1 x9 x4 ⟶ x5 x8 x9 = x1 x8 x9.
Assume H9:
∀ x8 . ... ⟶ ∀ x9 . prim1 x9 ... ⟶ x6 x8 x9 = x2 x8 x9.