Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι → ι → ι be given.
Let x3 of type ι → ι → ι be given.
Let x4 of type ι → ι → ι be given.
Let x5 of type ι → ι → ι be given.
Let x6 of type ι → ι → ο be given.
Let x7 of type ι → ι → ο be given.
Claim L2: x0 = x1
Apply L1 with
λ x8 x9 . x0 = x9.
The subproof is completed by applying unknownprop_36751e118df5c1b80ee289bfa85a0d6bea79da8ecbc4a6eae2f963f2b4d745c1 with x0, x2, x4, x6.
Apply and4I with
x0 = x1,
∀ x8 . prim1 x8 x0 ⟶ ∀ x9 . prim1 x9 x0 ⟶ x2 x8 x9 = x3 x8 x9,
∀ x8 . prim1 x8 x0 ⟶ ∀ x9 . prim1 x9 x0 ⟶ x4 x8 x9 = x5 x8 x9,
∀ x8 . prim1 x8 x0 ⟶ ∀ x9 . prim1 x9 x0 ⟶ x6 x8 x9 = x7 x8 x9 leaving 4 subgoals.
The subproof is completed by applying L2.
Let x8 of type ι be given.
Let x9 of type ι be given.
Apply unknownprop_148aab2e21bf4a2a0378620f413f6845c1c28ea43c2cda3058a8bdf8e236efe0 with
x0,
x2,
x4,
x6,
x8,
x9,
λ x10 x11 . x11 = x3 x8 x9 leaving 3 subgoals.
The subproof is completed by applying H3.
The subproof is completed by applying H4.
Apply L2 with
λ x10 x11 . prim1 x8 x10.
The subproof is completed by applying H3.
Apply L2 with
λ x10 x11 . prim1 x9 x10.
The subproof is completed by applying H4.
Apply H0 with
λ x10 x11 . e3162.. (f482f.. x11 (4ae4a.. 4a7ef..)) x8 x9 = x3 x8 x9.
Let x10 of type ι → ι → ο be given.
Apply unknownprop_148aab2e21bf4a2a0378620f413f6845c1c28ea43c2cda3058a8bdf8e236efe0 with
x1,
x3,
x5,
x7,
x8,
x9,
λ x11 x12 . x10 x12 x11 leaving 2 subgoals.
The subproof is completed by applying L5.
The subproof is completed by applying L6.
Let x8 of type ι be given.
Let x9 of type ι be given.
Apply unknownprop_01ea101418f5daaf86be503b2a30dd4068502035cc9e9cf32078e9c4691abbaf with
x0,
x2,
x4,
x6,
x8,
x9,
λ x10 x11 . x11 = x5 x8 x9 leaving 3 subgoals.
The subproof is completed by applying H3.
The subproof is completed by applying H4.
Apply L2 with
λ x10 x11 . prim1 x8 x10.
The subproof is completed by applying H3.
Apply L2 with
λ x10 x11 . prim1 x9 x10.
The subproof is completed by applying H4.
Apply H0 with
λ x10 x11 . e3162.. (f482f.. x11 (4ae4a.. (4ae4a.. 4a7ef..))) x8 x9 = x5 x8 x9.
Let x10 of type ι → ι → ο be given.
Apply unknownprop_01ea101418f5daaf86be503b2a30dd4068502035cc9e9cf32078e9c4691abbaf with
x1,
x3,
x5,
x7,
x8,
x9,
λ x11 x12 . x10 x12 x11 leaving 2 subgoals.
The subproof is completed by applying L5.
The subproof is completed by applying L6.
Let x8 of type ι be given.
Let x9 of type ι be given.
Apply unknownprop_86854eea85b744d4bb31fb503cfb71e1d637fa5fbb6152b580f507236aa74287 with
x0,
x2,
x4,
x6,
x8,
x9,
λ x10 x11 : ο . x11 = x7 x8 x9 leaving 3 subgoals.
The subproof is completed by applying H3.
The subproof is completed by applying H4.
Apply L2 with
λ x10 x11 . prim1 x8 x10.
The subproof is completed by applying H3.
Apply L2 with
λ x10 x11 . prim1 x9 x10.
The subproof is completed by applying H4.
Apply H0 with
λ x10 x11 . 2b2e3.. (f482f.. x11 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x8 x9 = x7 x8 x9.
Let x10 of type ο → ο → ο be given.
Apply unknownprop_86854eea85b744d4bb31fb503cfb71e1d637fa5fbb6152b580f507236aa74287 with
x1,
x3,
x5,
x7,
x8,
x9,
λ x11 x12 : ο . x10 x12 x11 leaving 2 subgoals.
The subproof is completed by applying L5.
The subproof is completed by applying L6.