Let x0 of type ι → ((ι → ο) → ο) → (ι → ι → ι) → ο be given.
Let x1 of type ι be given.
Let x2 of type (ι → ο) → ο be given.
Let x3 of type ι → ι → ι be given.
Assume H0:
∀ x4 : (ι → ο) → ο . (∀ x5 : ι → ο . (∀ x6 . x5 x6 ⟶ prim1 x6 x1) ⟶ iff (x2 x5) (x4 x5)) ⟶ ∀ x5 : ι → ι → ι . (∀ x6 . prim1 x6 x1 ⟶ ∀ x7 . prim1 x7 x1 ⟶ x3 x6 x7 = x5 x6 x7) ⟶ x0 x1 x4 x5 = x0 x1 x2 x3.
Apply unknownprop_c7497c326e0bcb75fa2cc505e6dafed2f342db0b83093fa52226d04b865b9a91 with
x1,
x2,
x3,
λ x4 x5 . x0 x4 (decode_c (f482f.. (e0718.. x1 x2 x3) (4ae4a.. 4a7ef..))) (e3162.. (f482f.. (e0718.. x1 x2 x3) (4ae4a.. (4ae4a.. 4a7ef..)))) = x0 x1 x2 x3.
Apply H0 with
decode_c (f482f.. (e0718.. x1 x2 x3) (4ae4a.. 4a7ef..)),
e3162.. (f482f.. (e0718.. x1 x2 x3) (4ae4a.. (4ae4a.. 4a7ef..))) leaving 2 subgoals.
Let x4 of type ι → ο be given.
Assume H1:
∀ x5 . x4 x5 ⟶ prim1 x5 x1.
Apply unknownprop_71d4b3d2b3a5f29d2cd05a29c47b2f0fa1a64aff8b5bd681eeb78733ed987d9d with
x1,
x2,
x3,
x4,
λ x5 x6 : ο . iff (x2 x4) x5 leaving 2 subgoals.
The subproof is completed by applying H1.
The subproof is completed by applying iff_refl with x2 x4.
The subproof is completed by applying unknownprop_b1715816bd75ab55604fa7666530ab99e6bf52403540cf592ed4c4fda9cb0db1 with x1, x2, x3.